算法汇总
文章平均质量分 71
chang_rj
为每天的提升而学习
展开
-
(单/双目)图像标定全流程(python/C++/Opencv实现)---代码篇(2)
一、实例重现运用opencv samples中的例子直接进行图像双目标定,具体参考可参考博客:OpenCV3.2.0 双目标定+立体匹配(1)先到OpenCV源码目录下(…/opencv-3.4.3/samples/cpp)找到stereo_calib.cpp。(2)找到标定模板图像(…/opencv-3.4.3/samples/data)和stereo_calib.xml,直接进行编译。...原创 2018-11-28 20:58:30 · 4677 阅读 · 0 评论 -
卷积原理:几种常用的卷积(标准卷积、深度卷积、组卷积、扩展卷积、反卷积)
转载自:  0、标准卷积默认你已经对卷积有一定的了解,此处不对标准卷积细讲。举个例子,假设有一个3×3大小的卷积层,其输入通道为16、输出通道为32。那么一般的操作就是用32个3×3的卷积核来分别同输入数据卷积,这样每个卷积核需要3×3×16个参数,得到的输出是只有一个通道的数据。之所以会得...转载 2018-12-14 16:33:34 · 33319 阅读 · 5 评论 -
YOLOv3目标检测、卡尔曼滤波、匈牙利匹配算法多目标追踪
转载自:https://blog.csdn.net/xiao__run/article/details/84374959我先上下结果图吧,效果勉强还行,在这里我只训练了行人,官网的weights是coco数据集训练的,有80类;1、YOLOV3目标检测关于yolov3的原理我在这里就不解释了,可谷歌学术自行阅读,说实话yolov3的效果着实不错,但是源码是C的,不依赖其他任何库,看的云里雾...转载 2018-12-19 15:40:19 · 4021 阅读 · 3 评论 -
tensorflow使用object detection实现目标检测超详细全流程(视频+图像集检测)
1、数据整理对生成的数据集(整理成VOC格式),通过Annotations的数据数进行train、test、val、trainval.txt的生成进入目录cd VOCdevkit/VOC2012/python data_segment.py""&原创 2018-12-13 14:04:48 · 11579 阅读 · 9 评论 -
梯度下降优化算法综述(转载)
该文转载自一只鸟的天空博客。 该文翻译自An overview of gradient descent optimization algorithms。 总所周知,梯度下降算法是机器学习中使用非常广泛的优化算法,也是众多机器学习算法中最常用的优化方法。几乎当前每一个先进的(state-of-the-art)机器学习库或者深度学习库都会包括梯度下降算法的不同变种实现。但是,它们...转载 2018-07-17 10:39:14 · 328 阅读 · 0 评论 -
face_recognation人脸识别tensorflow版本代码解析
人脸识别程序共分为4个部分,大致结构如下: 1.get_my_faces_dlib.py 使用opencv获取个人的人脸图像,并通过dlib库中的人脸特征提取,截取获取的正样本人脸数据集。 该程序共包括如下2个重要部分: (1)定义relight函数,对摄像头拍摄的图像进行光线的转换,多样化样本。 (2)dlib函数针对的是灰度图像,对图像进行灰度转换和resize,存储图像均为64*6...原创 2018-08-03 11:54:44 · 1577 阅读 · 3 评论 -
为什么CNN需要固定输入图像的尺寸(CNN图像尺寸输入限制问题)
通过CNN组成(卷积层和全连接层)进行分析。 (1)卷积层 卷积层对于图像是没有尺寸限制要求的。输入图像是28*28,卷积仅于自身的卷积核大小,维度有关,输入向量大小对其无影响(如第一层卷积,输入图像的大小和维度)。# 输入图像x = tf.placeholder(tf.float32, [None, 784])y_ = tf.placeholder(tf.float32, [No...原创 2018-08-07 15:56:52 · 23050 阅读 · 10 评论 -
SPP-Net:对RCNN的改进
SPP-Net是对rcnn的改进,spatial Pyramid Pooling,主要观点: (1)共用特征卷积图 (2)空间金字塔池化,有效地解决了不同尺度的图片在全连接层输出不一致的问题。 RCNN存在的问题: (1)RCNN通过对图像的裁剪crop或缩放warp,使得输入图片的信息缺失或变形,降低了图片识别的准确率。 (2)对每个RP进行卷积计算,算力过大。 ...转载 2018-08-07 16:56:34 · 1267 阅读 · 0 评论 -
yolov3实现
网址:https://pjreddie.com/darknet/yolo/ 按照该网址实现,很方便git clone https://github.com/pjreddie/darknetcd darknetmake# 下载weight模型wget https://pjreddie.com/media/files/yolov3.weights# 下载weight模型yolov3...原创 2018-08-17 12:25:43 · 3102 阅读 · 0 评论 -
目标检测方法-RCNN、fast RCNN、faster RCNN、mask RCNN、SSD、yolo
RCNN RCNN主要步骤: (1)生成候选框(select search)。在图像中确定2k个候选框,采用Felzenszwalbs‘s method、SLIC、quick shift等方法实现。 (2)将生成的候选框缩放至相同大小,输入CNN进行提取特征 (3)分类。对候选框中的特征进行判别,SVM (4)回归。对某一特征的候选框,调整位置。 缺点:对生成的每个候选框都进行...原创 2018-09-08 12:23:27 · 7121 阅读 · 1 评论 -
Data Augmentation--数据增强解决你有限的数据集
参考来源–感兴趣请戳我戳我. author是Bharath Raj。 以下是翻译内容,有部分删减,感兴趣的可以读原文,该blog仅供学习。笔耕不易,互相交流。 can my “state-of-the-art” neural network perform well with the meagre amount of data I have?Yes.我们的优化目的,是当参数沿着正确的...原创 2018-09-08 12:24:37 · 66536 阅读 · 40 评论 -
人脸识别中的活体检测算法综述
人脸识别中的活体检测算法综述,转载自知乎SigAI的分享。1. 什么是活体检测?–> 判断捕捉到的人脸是真实人脸,还是伪造的人脸攻击(如:彩色纸张打印人脸图,电子设备屏幕中的人脸数字图像以及面具等)。2. 为什么需要活体检测?–> 在金融支付,门禁等应用场景,活体检测一般是嵌套在人脸检测与人脸识别or验证中的模块,用来验证是否用户真实本人3. 活体检测对应的计算机视觉问题:...转载 2018-10-09 22:18:27 · 1922 阅读 · 0 评论 -
双目视觉标定,矫正,深度图(Vs +OpenCV C++ Python实现)
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/xiao__run/article/details/78887362 代码是最为耐心、最能忍耐和最令人愉快的伙伴,在任何艰难困苦的时刻,它都不会抛弃你(开场白) 长时...转载 2018-11-22 17:16:18 · 5408 阅读 · 9 评论 -
(单/双目)图像标定全流程(C++/Opencv实现)---代码篇
代码分为几个部分,c++部分使用g++进行编译(1)双目摄像头标定图像数据集收集保存#include <iostream>#include <opencv2/opencv.hpp> using namespace std;using namespace原创 2018-11-27 11:36:41 · 11534 阅读 · 24 评论 -
LITTI、VOC、Udacity等自动驾驶数据集下载及格式转化
https://github.com/umautobots/vod-converterVisual Object Dataset converterConverts between object dataset formats. Requires Python 3.6.Example: convert from data in KITTI format toPascal VOC forma...原创 2018-11-29 17:39:51 · 3137 阅读 · 0 评论 -
Udacity Self-Driving自动驾驶目标检测数据集使用指南
一、dataset1下载dataset1,该数据集大小为1.5G,共有9420张图像。label格式如下图所示,共有Car、Truck、Pedestrian三类。(使用数据格式转化工具可直接实现voc格式的转化,参考博客LITTI、VOC、Udacity等自动驾驶数据集下载及格式转化)实现:python main.py --from udacity-crowdai --from-path ...原创 2018-12-19 11:40:29 · 3913 阅读 · 0 评论