Haar+cascade AdaBoost分类器学习训练总结

本文总结了使用Haar特征和AdaBoost算法创建XX检测分类器的过程,包括准备样本集,计算特征值和积分图,选择最优分类器,通过AdaBoost训练强分类器,以及最后的级联策略。强调了在海量特征中挑选最优特征的重要性,以及积分图在加速计算中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

尽量用简单的语言总结一下,利用haar特征,结合级联分类器进行XX检测,这里以XX代表人脸。

整体思路分为5大步:

1、准备人脸、非人脸样本集;

2、计算特征值和积分图;

3、挑选最优分类器;

4、利用AdaBoost把这些分类器训练成一个强分类器;

5、级联,也就是强分类器的强强联手。

在开始前,一定要记住,以24*24窗口为例,就有16万+的特征数量,所以首先要从中筛选有用的特征(即最优弱分类器),然后利用AdaBoost将这些最优弱分类器训练成一个强分类器,最后将强分类器进行级联

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

1、准备人脸、非人脸样本集

这一步没什么好说的,

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值