为什么你的Cursor总是记不住上下文

各位应该有过类似的经历,用着用着Cursor,感觉AI好像忘记了之前聊的内容,变的胡言乱语或者有一个内容改了好几次都改不对。

今天就从原理上给大家解读下这个问题,首先,我们都知道,Cursor本身是依靠Claude的大模型去回答我们的问题,因此我们需要了解一些关于AI大模型是如何生成回答的,雨飞简单给大家科普下。

图片

不管是ChatGPT还是Claude,这种AI大模型,本质上是在做一个文字接龙的游戏,就是会根据输入的内容,按照一定的规则选择下一个词应该是什么,并且每次都添加一个词

这里的规则,就是我们可以控制的地方,有的人会认为应该选择概率最高的词,有的人会认为应该在概率排名靠前的TopK个中随机选一个效果会更好。这就是需要我们根据实际情况进行选择。这种随机性的引入,使得大模型能够生成更有创造力的文章,但同时就导致了就算我们使用相同的提示词,每次的输出也都可能得到不同的内容。

 

在我们每一次和Claude对话的时候,Cursor都会将之前的上下文信息携带上,输入给Claude,这样就导致了历史信息越多,输入的上下文就越多,而输出响应的时间就会变长。这也就是为何,我们一直在一个对话中不停的聊天,会导致这个页面出现卡顿的原因。

然而,由于算力以及响应时间等问题,上下文的长度是不可能无限扩展的,都是有一个上限值。在这里,我们一般用Token数进行衡量,Token就是大语言模型处理文本的时候,对文本进行切分的最小单位,可以是一个字,也可以是一个词组,这取决于大语言模型使用的编码策略。这个我们后面会给大家展示,现在稍作了解就可以。

在Cursor中,究竟支持多长的上下文呢。

在Cursor官方文档中,我们可以找到答案。文档中很明显的可以看到,在chat中支持2w的tokens,而在cmd-k中支持1w的tokens。因此,当我们聊天的上下文过长的时候,Cursor会删减一部分上下文记录以及相关代码,以便满足这个长度。

图片

那么问题来了,1w的token大概是多少单词或者汉字呢。这里,我们可以简单的记忆,1000个token通常代表750个英文单词或500个汉字。这个方法还需要我们自己去简单估算下上下文的长度,雨飞这里给大家找了一个网站可以比较方便的显示token数。

网址:https://tokencounter.org/claude_counter

下面是展示截图,目前这个网站只能统计Claude模型所占的token数。

图片

如果想统计GPT模型所占用的token数,可以使用下面这个网站。

网址:https://platform.openai.com/tokenizer

图片

为此,我们可以非常清晰的知道自己输入了大概多少的内容,是否超出了模型上限。

如果非要添加上下文信息的话,可以先让AI把之前的聊天记录进行总结,写到文件中,然后引用这个文件再进行后面的提问。这样相当于把复杂的聊天记录进行了压缩,更节省token数,而且指令还更清晰。

如果你觉得这篇文章对你有启发,欢迎点赞收藏转发下。目前运营了两个Cursor交流群,付费、免费的都有,有想一起交流学习的可以添加下方的微信,邀你一起学习。


❤️常驻小尾巴❤️

加 1060687688,备注「CSDN」,送你一份「AI工具与副业变现指南

<think>嗯,用户想了解Cursor编程中的具体应用场景和示例。首先,我需要回忆一下关于Cursor的信息,特别是之前提供的引用内容。引用1提到Cursor AI的配置技巧,比如设置语言、项目路径,调整建议详细程度,还有自动保存功能。引用2指出Cursor和VSCode的相似性,迁移设置和主题容易。引用3则涉及阅读大型项目时的索引耗时问题。 用户需要的是具体应用场景和例子,所以应该从代码补全、错误修复、代码重构、文档生成、项目理解这些方面入手。每个场景都要结合引用里的信息,比如代码补全可以提到设置语言和环境(引用1),错误修复可以联系自动保存和实时建议(引用1),代码重构可能需要调整AI建议的详细程度(引用1),文档生成可能涉及项目路径配置(引用1),项目理解则要提到索引耗时的问题(引用3)。 还要注意使用中文回答,结构要清晰,分点说明。每个点下面最好有例子,比如Python代码块,这样更直观。同时,按照要求,在段落末尾添加引用标识,比如在配置环境时引用[^1],在项目迁移时引用[^2],处理大型项目时引用[^3]。 可能还需要考虑用户的实际使用场景,比如新手程序员可能需要代码补全和错误修复的经验,而资深开发者可能更关注代码重构和项目理解。所以例子要覆盖不同层次的需求。另外,要确保LaTeX格式正确,不过用户的问题里可能数学表达式不多,但如果有的话,比如算法复杂度,需要用$...$包裹。 最后,生成相关问题,可能需要包括如何优化Cursor的性能,如何配置设置,处理大型项目的技巧,与其他工具的比较等。这些问题要基于已有的引用内容,确保有据可查。</think>### Cursor编程中的具体应用场景与示例 #### 一、代码智能补全与生成 1. **上下文感知补全** Cursor能根据当前代码上下文实时生成补全建议。例如输入循环结构时,输入`for i in range(`后会自动补全参数,并生成循环体模板: ```python for i in range(10): print(i) # AI生成的代码段[^1] ``` 2. **函数级代码生成** 输入注释描述需求,如`# 用Pandas读取CSV并计算平均值`,Cursor可生成完整代码: ```python import pandas as pd df = pd.read_csv('data.csv') print(df.mean()) ``` #### 二、错误诊断与修复 当检测到`SyntaxError`时,Cursor会直接标记错误位置并提供修复方案。例如: ```python x = 5 if x = 5: # Cursor提示改为"=="并自动修正[^1] print("正确") ``` #### 三、代码重构优化 1. **代码简化** 将冗长的条件判断转换为三元表达式: ```python # 原代码 if score > 60: result = "合格" else: result = "不合格" # Cursor建议改为: result = "合格" if score > 60 else "不合格" ``` 2. **性能优化** 提示将$O(n^2)$的嵌套循环改为$O(n)$的字典查询[^1]。 #### 四、文档辅助生成 输入`# 生成函数的API文档`,Cursor可为函数自动添加符合Google风格的注释: ```python def calculate_bmi(weight, height): """计算身体质量指数(BMI) Args: weight (float): 体重(kg) height (float): 身高(m) Returns: float: BMI值 """ return weight / (height ** 2) ``` #### 五、项目理解与导航 通过`CMD+K`打开对话界面,输入`解释当前文件的结构`,Cursor会生成模块依赖关系图(需安装Graphviz插件)。对于大型项目,建议先建立索引以提高响应速度[^3]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值