以ChatGPT为代表的大模型在自然语言理解方面的能力非常强大,效果非常惊艳,但是我们在使用的时候会发现,如果要在实际工作中使用,就要手动编写Prompt,给模型提供详细的上下文数据,从而让模型的回答更服务我们的要求。
但是只要用过的就能够知道,这个操作其实是比较麻烦的。
比如,我们正在修改一个代码文件,我要让模型增加一个新的逻辑,我就需要将当前代码作为Prompt的一部分,然后粘贴到ChatGPT的输入框中,发起问答,等ChatGPT输出完后,我们再将结果手动复制到代码文件中。这时候我们就会想,有没有可能把这些操作简化?
还有一个比较常见的场景就是,帮我找一下当前代码库的某个实现逻辑,这种问题对于一个新人来说,其实是比较困难的,那有没有办法可以解决呢?
其实答案是有的!
那就是以IDE插件作为入口,提供方便的方式让用户将私域知识提供给大模型,从而将一开始提到的用户手动构造Prompt的过程简化,提高工作效率。
RAG的实现思路:
插件端能力:
插件端提供了很方便的方式,获取到私域知识,从而简化上了面场景中我们手动构造Prompt的成本,从而提高效率。
领取Baidu Comate VIP即可快速体验。