题意是给出一个数n,一个长度为n-1的字符串。求的是1到n符合要求的序列的数量,该序列需要满足当该位置为G时,这个位置的数大于后面位置的数。当该位置为L时,这个位置的数要小于后面位置的数。最后数量模m。
dp[x][y]表示x个数,以x数里面第y小的数结尾的符合要求的数量。
然后如果该位置为G,也就是说新来的数比原来结尾的数要小(注意等于也可以),那么dp[i+1][k]=sum(dp[i][j])(j>=k)
如果该位置为L,新来的数比原来结尾的数大,那么dp[i+1][k]=sum(dp[i][j])(j<k)。
这个时候这个算法复杂度是O(n^3)。
把复杂度化简成O(n^2)。具体就是发现每一次的dp[i][j]都是以一段一段(.......)的方式往dp[i+1][k]贡献,所以可以通过求前缀和把复杂度降到O(n^2)。
这个题目Topcoder也有类似的,不过那个题目数据量不大,O(n^3)也能过掉。个人觉得这个问题特别绕。。。。又是想了一晚上,最后按照自己的想法终于调出来了。。。太开心了。。。
另外看了编程之美上的对代码的写法问题,要尽量把代码模块化。在51nod上看了一个Google工程师写的一些代码,发现果真如书中所言,写得既简洁又漂亮。那道题同样是暴力,比我什么都在main里面干强多了,好多东西模块化之后思路也都变得清晰了许多。
代码:
#pragma warning(disable:4996)
#include <iostream>
#include <algorithm>
#include <cmath>
#include <vector>
#include <string>
#include <cstring>
#include <queue>
#include <map>
using namespace std;
typedef long long ll;
const int MAXN = 5000 + 5;
int n, mod, dp[MAXN][MAXN], ret;
string s;
void input()
{
cin >> n >> mod;
cin >> s;
}
void work()
{
int i, j;
dp[1][1] = 1;
for (i = 1; i < n; i++)
{
for (j = 1; j <= i; j++)
{
dp[i][j] = (dp[i][j] + dp[i][j - 1]) % mod;
}
for (j = 1; j <= i + 1; j++)
{
if (s[i - 1] == 'L')
{
dp[i + 1][j] = (dp[i + 1][j] + dp[i][j - 1]) % mod;
}
else
{
dp[i + 1][j] = (dp[i + 1][j] + dp[i][i]) % mod;
dp[i + 1][j] = (dp[i + 1][j] - dp[i][j - 1] + mod) % mod;
}
}
}
ret = 0;
for (i = 1; i <= n; i++)
{
ret = (ret + dp[n][i]) % mod;
}
cout << ret << endl;
}
int main()
{
//freopen("i.txt", "r", stdin);
//freopen("o.txt", "w", stdout);
input();
work();
//system("pause");
return 0;
}