CNN初探(一)------补充

Convolution Arithmetic

为了简化情况,假设输入(input)、特征块(kernel)、补零(padding)以及步长(strides)在不同轴上的长度均相等,分别为i、k、p、s。


No zero padding, unit strides

No zero padding, unit strides

o=ik+1,s=1,p=0


Zero padding, unit strides

Zero padding, unit strides

o=ik+2p+1,s=1

Half (same) padding

在这里输入与输出的大小一样,这是一个期望的特性

Half (same) padding

o=ik+2p+1=i,s=1,k=2n+1p=k/2

Full padding

当需要输出比输入更大时

Full padding

o=ik+2p+1=i+k1,s=1p=k1


No zero padding, non-unit strides

No zero padding, non-unit strides

o=iks+1,p=0


Zero padding, non-unit strides

Zero padding, non-unit strides

o=i+2pks+1,p=0


参考资料

  1. Vincent Dumoulin , Francesco Visin, A guide to convolution arithmetic for deep learning, 2016-3-24.

知识共享许可协议
本作品采用知识共享署名-非商业性使用-相同方式共享 4.0 国际许可协议进行许可。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值