矩阵论基础

矩阵是数学中的一个重要的基本概念,是代数学的一个主要研究对象,也是数学研究和应用的一个重要工具。“矩阵”这个词是由西尔维斯特首先使用的,他是为了将数字的矩形阵列区别于行列式而发明了这个述语。而实际上,矩阵这个课题在诞生之前就已经发展的很好了。从行列式的大量工作中明显的表现出来,为了很多目的,不管行列式的值是否与问题有关,方阵本身都可以研究和使用,矩阵的许多基本性质也是在行列式的发展中建立起来的。

1855 年,埃米特(C.Hermite,1822~1901)证明了别的数学家发现的一些矩阵类的特征根的特殊性质,如现在称为埃米特矩阵的特征根性质等。后来,克莱伯施(A.Clebsch,1831~1872)、布克海姆(A.Buchheim)等证明了对称矩阵的特征根性质。泰伯(H.Taber)引入矩阵的迹的概念并给出了一些有关的结论。 在矩阵论的发展史上,弗罗伯纽斯(G.Frobenius,1849-1917)的贡献是不可磨灭的。他讨论了最小多项式问题,引进了矩阵的秩、不变因子和初等因子、正交矩阵、矩阵的相似变换、合同矩阵等概念,以合乎逻辑的形式整理了不变因子和初等因子的理论,并讨论了正交矩阵与合同矩阵的一些重要性质。 1854 年,约当研究了矩阵化为标准型的问题。1892年,梅茨勒(H.Metzler)引进了矩阵的超越函数概念并将其写成矩阵的幂级数的形式。傅立叶、西尔和庞加莱的著作中还讨论了无限阶矩阵问题,这主要是适用方程发展的需要而开始的。

矩阵

矩阵类型

向量的类型根据元素的实际意义不同可以分为,

  1. 物理向量

    泛指既有幅值,又有方向的物理量,如速度、加速度、位移等。

  2. 几何向量

    为了将物理向量可视化,常用带方向的线段表示。这种有向线段出称为几何向量。

  3. 代数向量

    几何向量可以用代数形式表示。例如,若平面上的几何向量 v = a b ⃗ v=\vec{ab} v=ab 中点a的坐标为 ( a 1 , a 2 ) (a_1,a_2) (a1,a2),点b的坐标为 ( b 1 , b 2 ) (b_1,b_2) (b1,b2),则该几何向量可以表示为代数形式 [ b 1 − a 1 b 2 − a 2 ] ​ \begin{bmatrix} b_1-a_1\\ b_2-a_2\\ \end{bmatrix} ​ [b1a1b2a2]

其中,根据元素的类型不同,代数向量又可以分为以下三种,

  1. 常数向量

    向量中的元素为实数或复数

  2. 函数向量

    向量中的元素包含函数值,如 x = [ 1 , x , x 2 , . . . , x n ] T \mathbf{x}=[1,x,x^2,...,x^n]^T x=[1,x,x2,...,xn]T

  3. 随机向量

    向量中的元素为随机变量或随机过程,如 x = [ x 1 ( n ) , x 2 ( n ) , . . . , x m ( n ) ] T \mathbf{x}=[x_1(n),x_2(n),...,x_m(n)]^T x=[x1(n),x2(n),...,xm(n)]T,其中 x 1 ( n ) , x 2 ( n ) , . . . , x m ( n ) x_1(n),x_2(n),...,x_m(n) x1(n),x2(n),...,xm(n) m m m个随机过程或随机信号

矩阵运算

转置、共轭、共轭转置、加法、乘法和求逆

矩阵的基本运算包括矩阵的转置、共轭、共轭转置、加法、乘法和求逆
A = [ a 11 a 12 ⋯ a 1 m a 21 a 22 ⋯ a 2 m ⋯ ⋯ ⋯ ⋯ a m 1 a m 2 ⋯ a m m ] A=\begin{bmatrix}{a_{11}} & {a_{12}} & {\cdots} & {a_{1 m}} \\ {a_{21}} & {a_{22}} & {\cdots} & {a_{2 m}} \\ {\cdots} & {\cdots} & {\cdots} & {\cdots} \\ {a_{m 1}} & {a_{m 2}} & {\cdots} & {a_{m m}}\end{bmatrix} A=a11a21am1a12a22am2a1ma2mamm

  1. 矩阵 A A A转置记为 A T A^T AT,其元素定义为 [ A T ] i j = a j i [A^T]_{ij}=a_{ji} [AT]ij=aji

A T = [ a 11 a 21 ⋯ a m 1 a 12 a 22 ⋯ a m 2 ⋯ ⋯ ⋯ ⋯ a 1 m a 2 m ⋯ a m m ] A^T=\begin{bmatrix}{a_{11}} & {a_{21}} & {\cdots} & {a_{m1}} \\ {a_{12}} & {a_{22}} & {\cdots} & {a_{m2}} \\ {\cdots} & {\cdots} & {\cdots} & {\cdots} \\ {a_{1m}} & {a_{2m}} & {\cdots} & {a_{m m}}\end{bmatrix} AT=a11a12a1ma21a22a2mam1am2amm

  1. 矩阵 A A A共轭记为 A ∗ A^* A,其元素定义为 [ A ∗ ] i j = a i j ∗ [A^*]_{ij}=a_{ij}^* [A]ij=aij

A ∗ = [ a 11 ∗ a 12 ∗ ⋯ a 1 m ∗ a 21 ∗ a 22 ∗ ⋯ a 2 m ∗ ⋯ ⋯ ⋯ ⋯ a m 1 ∗ a m 2 ∗ ⋯ a m m ∗ ] A^*=\begin{bmatrix}{a_{11}^*} & {a_{12}^*} & {\cdots} & {a_{1 m}^*} \\ {a_{21}^*} & {a_{22}^*} & {\cdots} & {a_{2 m}^*} \\ {\cdots} & {\cdots} & {\cdots} & {\cdots} \\ {a_{m 1}^*} & {a_{m 2}^*} & {\cdots} & {a_{m m}^*}\end{bmatrix} A=a11a21am1a12a22am2a1ma2mamm

  1. 矩阵 A A A共轭转置记为 A H A^H AH,其元素定义为 [ A H ] i j = a j i ∗ [A^H]_{ij}=a_{ji}^* [AH]ij=aji

A T = [ a 11 ∗ a 21 ∗ ⋯ a m 1 ∗ a 12 ∗ a 22 ∗ ⋯ a m 2 ∗ ⋯ ⋯ ⋯ ⋯ a 1 m ∗ a 2 m ∗ ⋯ a m m ∗ ] A^T=\begin{bmatrix}{a_{11}^*} & {a_{21}^*} & {\cdots} & {a_{m1}^*} \\ {a_{12}^*} & {a_{22}^*} & {\cdots} & {a_{m2}^*} \\ {\cdots} & {\cdots} & {\cdots} & {\cdots} \\ {a_{1m}^*} & {a_{2m}^*} & {\cdots} & {a_{m m}^*}\end{bmatrix} AT=a11a12a1ma21a22a2mam1am2amm
共轭转置又被称为Hermitian伴随、Hermitian转置或Hermitian共轭, A = A T A=A^T A=AT的实方阵称为对称矩阵, A = A H A=A^H A=AH的复方阵称为Hermitian矩阵

  1. 方阵 A A A逆矩阵记为 A − 1 A^{-1} A1 A − 1 A^{-1} A1被定义为满足以下关系 A A − 1 = A A − 1 = I AA^{-1}=AA^{-1}=\mathbf{I} AA1=AA1=I

  2. 加法与乘法

    • 两个 m × n m\times n m×n矩阵 A 、 B A、B AB加法 [ A + B ] i j = a i j + b i j [A+B]_{ij}=a_{ij}+b_{ij} [A+B]ij=aij+bij

    • m × n m\times n m×n大小的矩阵 A A A 1 × n 1\times n 1×n大小的向量 x = [ x 1 , . . . , x n ] x=[x_1,...,x_n] x=[x1,...,xn]相乘, [ A x ] i = ∑ j = 1 n a i j x j , i = 1 , . . . , m [Ax]_i=\sum_{j=1}^na_{ij}x_j,\quad i=1,...,m [Ax]i=j=1naijxj,i=1,...,m

    • m × n ​ m\times n​ m×n大小的矩阵 A ​ A​ A n × r ​ n\times r​ n×r大小的矩阵 B ​ B​ B相乘, [ A B ] i j = ∑ k = 1 n a i k b k j , i = 1 , . . . , m ; j = 1 , . . . , r ​ [AB]_{ij}=\sum_{k=1}^na_{ik}b_{kj},\quad i=1,...,m;j=1,...,r​ [AB]ij=k=1naikbkj,i=1,...,m;j=1,...,r

    需要注意的是,一般来说,矩阵乘积是不满足交换律的

性质

关于矩阵中转置、共轭、共轭转置、求逆的性质

  1. 分配律

    ( A + B ) ∗ = A ∗ + B ∗ , ( A + B ) T = A T + B T , ( A + B ) H = A H + B H ​ (A+B)^*=A^*+B^*,\quad (A+B)^T=A^T+B^T,\quad (A+B)^H=A^H+B^H​ (A+B)=A+B,(A+B)T=AT+BT,(A+B)H=AH+BH

  2. 矩阵乘积中转置、共轭转置、求逆的性质

    ( A B ) T = B T A T , ( A B ) H = B H A H , ( A B ) − 1 = B − 1 A − 1 ​ (AB)^T=B^TA^T,\quad (AB)^H=B^HA^H,\quad (AB)^{-1}=B^{-1}A^{-1}​ (AB)T=BTAT,(AB)H=BHAH,(AB)1=B1A1

  3. 转置、共轭、共轭转置与求逆交换

    ( A ∗ ) − 1 = ( A − 1 ) ∗ , ( A T ) − 1 = ( A − 1 ) T , ( A H ) − 1 = ( A − 1 ) H (A^*)^{-1}=(A^{-1})^*,\quad (A^T)^{-1}=(A^{-1})^T,\quad (A^H)^{-1}=(A^{-1})^H (A)1=(A1),(AT)1=(A1)T,(AH)1=(A1)H

矩阵函数

除了上述矩阵的基本运算之外,还有矩阵函数

  1. 三角函数
    sin ⁡ ( A ) = ∑ n = 0 ∞ ( − 1 ) n A 2 n + 1 ( 2 n + 1 ) ! = A − 1 3 ! A 3 + 1 5 ! A 5 − ⋯ cos ⁡ ( A ) = ∑ n = 0 ∞ ( − 1 ) n A 2 n ( 2 n ) ! = I − 1 2 ! A 2 + 1 4 ! A 4 − ⋯ \begin{aligned} \sin (\boldsymbol{A}) &=\sum_{n=0}^{\infty} \frac{(-1)^{n} \boldsymbol{A}^{2 n+1}}{(2 n+1) !}=\boldsymbol{A}-\frac{1}{3 !} \boldsymbol{A}^{3}+\frac{1}{5 !} \boldsymbol{A}^{5}-\cdots \\ \cos (\boldsymbol{A}) &=\sum_{n=0}^{\infty} \frac{(-1)^{n} \boldsymbol{A}^{2 n}}{(2 n) !}=\boldsymbol{I}-\frac{1}{2 !} \boldsymbol{A}^{2}+\frac{1}{4 !} \boldsymbol{A}^{4}-\cdots \end{aligned} sin(A)cos(A)=n=0(2n+1)!(1)nA2n+1=A3!1A3+5!1A5=n=0(2n)!(1)nA2n=I2!1A2+4!1A4

  2. 指数函数
    e A = ∑ n = 0 ∞ 1 n ! A n = I + A + 1 2 A 2 + 1 3 ! A 3 + ⋯ e − A = ∑ n = 0 ∞ 1 n ! ( − 1 ) n A n = I − A + 1 2 A 2 − 1 3 ! A 3 + ⋯ e A t = I + A t + 1 2 A 2 t 2 + 1 3 ! A 3 t 3 + ⋯ \begin{aligned} \mathrm{e}^{A} &=\sum_{n=0}^{\infty} \frac{1}{n !} \boldsymbol{A}^{n}=\boldsymbol{I}+\boldsymbol{A}+\frac{1}{2} \boldsymbol{A}^{2}+\frac{1}{3 !} \boldsymbol{A}^{3}+\cdots \\ \mathrm{e}^{-\boldsymbol{A}} &=\sum_{n=0}^{\infty} \frac{1}{n !}(-1)^{n} \boldsymbol{A}^{n}=\boldsymbol{I}-\boldsymbol{A}+\frac{1}{2} \boldsymbol{A}^{2}-\frac{1}{3 !} \boldsymbol{A}^{3}+\cdots \\ \mathrm{e}^{\boldsymbol{A} t} &=\boldsymbol{I}+\boldsymbol{A} t+\frac{1}{2} \boldsymbol{A}^{2} t^{2}+\frac{1}{3 !} \boldsymbol{A}^{3} t^{3}+\cdots \end{aligned} eAeAeAt=n=0n!1An=I+A+21A2+3!1A3+=n=0n!1(1)nAn=IA+21A23!1A3+=I+At+21A2t2+3!1A3t3+

  3. 对数函数
    ln ⁡ ( I + A ) = ∑ n = 1 ∞ ( − 1 ) n − 1 n A n = A − 1 2 A 2 + 1 3 A 3 − ⋯ \ln (I+A)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} A^{n}=A-\frac{1}{2} A^{2}+\frac{1}{3} A^{3}-\cdots ln(I+A)=n=1n(1)n1An=A21A2+31A3

  4. 矩阵导数
    d A d t = A ˙ = [ d a 11 d t d a 12 d t ⋯ d a 1 n d t d a 21 d t d a 22 d t ⋯ d a 2 n d t ⋮ ⋮ ⋱ ⋮ d a m 1 d t d a m 2 d t ⋯ d a m n d t ] \frac{\mathrm{d} \boldsymbol{A}}{\mathrm{d} t}=\dot{\boldsymbol{A}}=\left[ \begin{array}{cccc}{\frac{\mathrm{d} a_{11}}{\mathrm{d} t}} & {\frac{\mathrm{d} a_{12}}{\mathrm{d} t}} & {\cdots} & {\frac{\mathrm{d} a_{1 n}}{\mathrm{d} t}} \\ {\frac{\mathrm{d} a_{21}}{\mathrm{d} t}} & {\frac{\mathrm{d} a_{22}}{\mathrm{d} t}} & {\cdots} & {\frac{\mathrm{d} a_{2 n}}{\mathrm{d} t}} \\ {\vdots} & {\vdots} & {\ddots} & {\vdots} \\ {\frac{\mathrm{d} a_{m 1}}{\mathrm{d} t}} & {\frac{\mathrm{d} a_{m 2}}{\mathrm{d} t}} & {\cdots} & {\frac{\mathrm{d} a_{m n}}{\mathrm{d} t}}\end{array}\right] dtdA=A˙=dtda11dtda21dtdam1dtda12dtda22dtdam2dtda1ndtda2ndtdamn

  5. 矩阵积分
    ∫ A d t = [ ∫ a 11 d t ∫ a 12 d t ⋯ ∫ a 1 n d t a 21 d t ∫ a 22 d t ⋯ ∫ a 2 n d t ⋮ ⋮ ⋱ ⋮ ∫ a m 1 d t ∫ a m 2 d t ⋯ ∫ a m n d t ] \int \boldsymbol{A} \mathrm{d} t=\left[ \begin{array}{cccc}{\int a_{11} \mathrm{d} t} & {\int a_{12} \mathrm{d} t} & {\cdots} & {\int a_{1 n} \mathrm{d} t} \\ {a_{21} \mathrm{d} t} & {\int a_{22} \mathrm{d} t} & {\cdots} & {\int a_{2 n} \mathrm{d} t} \\ {\vdots} & {\vdots} & {\ddots} & {\vdots} \\ {\int a_{m 1} \mathrm{d} t} & {\int a_{m 2} \mathrm{d} t} & {\cdots} & {\int a_{m n} \mathrm{d} t}\end{array}\right] Adt=a11dta21dtam1dta12dta22dtam2dta1ndta2ndtamndt

特殊矩阵

对角矩阵、零矩阵、单位矩阵

幂等矩阵

幂等矩阵 A A A具有以下性质:

在这里插入图片描述

幂单矩阵

又被称为对合矩阵,若 A 2 = A A = I ​ A^2=AA=\mathbf{I}​ A2=AA=I,若 A ​ A​ A为幂单矩阵,则函数 f ( ⋅ ) ​ f(\cdot)​ f()具有以下性质:
f ( s I + t A ) = 1 2 [ ( I + A ) f ( s + t ) + ( I − A ) f ( s − t ) ] f(s \boldsymbol{I}+t \boldsymbol{A})=\frac{1}{2}[(\boldsymbol{I}+\boldsymbol{A}) f(s+t)+(\boldsymbol{I}-\boldsymbol{A}) f(s-t)] f(sI+tA)=21[(I+A)f(s+t)+(IA)f(st)]
其中,幂等矩阵和幂单矩阵也有关系,矩阵 A A A是幂单矩阵,当且仅当 1 2 ( A + I ) \frac{1}{2}\boldsymbol({A}+\boldsymbol{I}) 21(A+I)

幂零矩阵

方阵 A A A被称为幂零矩阵,若 A 2 = A A = O A^2=AA=\boldsymbol{O} A2=AA=O,若 A A A为幂单矩阵,则函数 f ( ⋅ ) f(\cdot) f()具有以下性质:
f ( s I + t A ) = I f ( s ) + t A f ′ ( s ) f(s \boldsymbol{I}+t \boldsymbol{A})=\boldsymbol{I}f(s)+t\boldsymbol{A}f^{\prime}(s) f(sI+tA)=If(s)+tAf(s)


Source from: 《矩阵分析与应用》,张贤达

  • 2
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 北航矩阵论试题pdf是北航(北京航空航天大学)教授或提供的一份关于矩阵论的试题集,以PDF格式提供给学生和其他有兴趣的人参考和学习。 矩阵论是数学中一个重要的分支,涉及到矩阵的运算、性质和应用等方面。矩阵在各个学科和领域中都有广泛的应用,如线性代数、物理学、计算机科学等。因此,对于学习和掌握矩阵论知识是非常重要的。 北航矩阵论试题pdf可能包括一系列的习题和问题,涉及到矩阵的基本概念、矩阵的运算、矩阵的特征值和特征向量等内容。通过解答这些试题,可以帮助学生巩固和理解矩阵论的相关知识,培养分析和解决问题的能力。 对于有兴趣或需要学习矩阵论的人来说,北航矩阵论试题pdf是一个很好的学习资料。通过仔细阅读和理解试题,思考和解答其中的问题,可以提高对矩阵论知识的理解和应用能力。 总之,北航矩阵论试题pdf是北航提供的关于矩阵论的试题集,通过解答这些试题,可以提高对矩阵论知识的理解和应用能力,对于学习和掌握矩阵论知识有一定的帮助。 ### 回答2: 北航矩阵论试题 pdf 是指北京航空航天大学在矩阵论方面的考试试题以及相关答案文档,一般以 PDF 格式进行发布和传播。矩阵论是数学中的一个重要分支,研究矩阵的性质、运算和应用等。对于北航的学生而言,掌握矩阵论知识是他们专业学习的一部分。 北航矩阵论试题 pdf 提供了学生们在备考期间进行复习和练习的材料。学生可以通过阅读试题了解北航矩阵论课程的考查重点以及题型分布,从而有针对性地进行学习。试题中的相关答案文档也为学生提供了自我检测和纠错的机会,帮助他们更好地理解和掌握矩阵论知识。 通过北航矩阵论试题 pdf 的学习,学生们可以提高解决矩阵相关问题的能力,增强他们的逻辑思维和推理能力。同时,这也为他们将来在工程实践和科学研究中应用矩阵论提供了坚实的理论基础。 总之,北航矩阵论试题 pdf 是北航学生在学习矩阵论课程过程中重要的学习资料。它通过提供试题和相关答案文档,帮助学生加深理解矩阵论知识、提高解题能力,为他们未来的学习和应用打下坚实的基础。 ### 回答3: 北航矩阵论试题PDF是北航发布的一份试题材料,主要用于学生复习和备考矩阵论课程。该PDF文件包含了一系列矩阵论的试题,涵盖了该课程的各个知识点和重要内容。 首先,矩阵论是线性代数的一个分支,是现代数学领域中非常重要的一个研究方向。它主要研究矩阵的性质与运算,以及与线性方程组、线性映射等数学对象之间的关系。在许多领域中,如物理学、工程学、计算机科学等都会广泛应用到矩阵论的知识。 北航矩阵论试题PDF提供了一些典型的试题,通过解答这些试题,学生们可以巩固并加深对矩阵论知识的理解。试题设计了不同难度的问题,涉及到矩阵的基本操作、特征值与特征向量、矩阵的相似、矩阵的分解等知识点。通过学生对试题的分析与解答,不仅可以帮助他们检验自己对知识的掌握程度,还可以培养他们的问题解决和推理能力。 在准备矩阵论考试的过程中,学生可以从北航矩阵论试题PDF中选择合适的试题进行针对性的练习和复习。同时,可以通过对试题的讲解与探讨,加深对矩阵论知识的理解,掌握解题技巧,提高解题效率。此外,学生还可以通过对试题的反复练习,强化对矩阵论知识的记忆,提升应对考试的信心和能力。 总之,北航矩阵论试题PDF为学生提供了一个重要的复习工具,通过解答试题,学生可以更好地掌握矩阵论知识,提高考试成绩,为未来的学习和研究打下坚实的基础。同时,对于对矩阵论感兴趣的人而言,北航矩阵论试题PDF也是一个宝贵的学习资源。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值