压缩感知的提出基于一个非常朴素的问题, Ax=b 能否有唯一解,当方程个数大于未知量个数时,这是肯定的。
但是当 m<<n 时,特别是当所求的 x 的值只集中在某些区域,就很难获得所需的答案。
当
∑s:={x∈ℝN:||x||0≤s}
压缩感知就是基于对原信号的观测
y
,其中
原理
P0:minx∈ℝN||x||0s.t.Θx=y
如果我们对 Θ 作一定的限制,由 P0 就可以精确恢复 x 信号:
定理
Δ(Θx0)=x0
上述定理即表示为了恢复嵌入在N维空间中的s-稀疏向量,需要2s次的观测。但是实际上 P0 是一个NP完全问题,为此,付出更多观测代价,找到以下更有效的算法,
P1:minx∈ℝN||x||1s.t.Θx=y
上述规划问题可以转换为以下形式,
P2:mint∈ℝNt1+t2+...+tNs.t.Θx=yti≥0,i=1,2,...,N.−tj≤xj≤tj
为了得到 P0 和 P1 等价的条件,首先定义指标集 T⊂{1,...,N} 及向量 v∈ℝN ,将 v 中指标在
定义 称 Θ 满足s-阶零空间性质,如果任意的 v∈kerΘ ,均有
||vT||1≤||vTc||1,对任意的T⊂{1,...,N},#T=s.
上述定义可以理解为 kerΘ 的非零元素较为均匀地分布,而不是集中在某 s 个元素上。
定义
Δ(Θx0)=x0
但是给定一个矩阵的零空间性质很难在理论或者计算上证明,因此提出了另一种刻画方式矩阵的 RIP性质(RestrictedIsometryProperty)。
定义 如果存在常数 σs∈[0,1) 使得
(1−σs)||x||2≤||Θx||2≤(1−σs)||x||2
对任意的 x∈∑s 成立,其中 σs 被称为RIP常数。上述定义可以理解为矩阵 ΘTTΘT 所有特征值位于区间 [1−σs,1+σs] ,刻画了矩阵 Θ 中任取 s 列所形成矩阵的正交程度。
下面给出
定理 假定矩阵 Θ 满足2s阶RIP性质,且RIP常数 σ2s≤2√−1 ,则在 P1 中,对任意的 x0∈∑s ,
Δ(Θx0)=x0
对于非稀疏信号,也能进行较好地恢复。
定理 假定矩阵 Θ 满足2s阶RIP性质,且RIP常数 σ2s≤2√−1 ,则在 P1 中,对任意的 x0∈ℝN ,
||Δ(Θx0)−x0||2≤C0σs(x)1s√,其中,C0为常数,σs(x)X:=minz∈∑s||x−z||X,x∈ℝNσs(K)X:=minx∈kσs(x)X,K⊂ℝN
那么对于 P1 ,为了精确恢复所有s-稀疏信号,观测次数 n 应该为多少?
定理
Δ(Θx0)=x0,对任意x∈∑2s,
则
n≥c1slog(Nc2s),其中c1=1log9,c2=4
本作品采用知识共享署名-相同方式共享 4.0 国际许可协议进行许可