压缩感知(一)

压缩感知的提出基于一个非常朴素的问题, Ax=b 能否有唯一解,当方程个数大于未知量个数时,这是肯定的。

classical answer

但是当 m<<n 时,特别是当所求的 x 的值只集中在某些区域,就很难获得所需的答案。

Shepp–Logan phantom

x满足一定的稀疏性时,就能够获得一定的唯一解。其中s-稀疏向量的定义如下

s:={xN:||x||0s}

压缩感知就是基于对原信号的观测 y ,其中y=Θx0 ynxN ,在 n<<N 的情况下,借助 x0 的稀疏性,反求原信号 x

原理

RnRNΔ,则还原效果可以表示为 ||x0Δ(Θx0)||X ,其中 X 表示一定范数。当x0中非0元素较少时,一种自然的解码即是如下规划问题的解

P0minxN||x||0s.t.Θx=y

如果我们对 Θ 作一定的限制,由 P0 就可以精确恢复 x 信号:

定理 假定 ΘnN 是一个任 2s 列均线性无关的矩阵。我们选择 P0 解码。那么对于任意的 x0s

Δ(Θx0)=x0

上述定理即表示为了恢复嵌入在N维空间中的s-稀疏向量,需要2s次的观测。但是实际上 P0 是一个NP完全问题,为此,付出更多观测代价,找到以下更有效的算法,
P1minxN||x||1s.t.Θx=y

上述规划问题可以转换为以下形式,
P2mintNt1+t2+...+tNs.t.Θx=yti0,i=1,2,...,N.tjxjtj

为了得到 P0 P1 等价的条件,首先定义指标集 T{1,...,N} 及向量 vN ,将 v 中指标在T中的元素取出构成新的向量 vT#T
定义 Θ 满足s-阶零空间性质,如果任意的 vkerΘ ,均有
||vT||1||vTc||1,T{1,...,N},#T=s.

上述定义可以理解为 kerΘ 的非零元素较为均匀地分布,而不是集中在某 s 个元素上。
定义 如果选择 P1 的解法, Θ 满足且仅满足s-阶零空间性质,那么,对于任意的 x0s
Δ(Θx0)=x0

但是给定一个矩阵的零空间性质很难在理论或者计算上证明,因此提出了另一种刻画方式矩阵的 RIP(RestrictedIsometryProperty)
定义 如果存在常数 σs[0,1) 使得
(1σs)||x||2||Θx||2(1σs)||x||2

对任意的 xs 成立,其中 σs 被称为RIP常数。上述定义可以理解为矩阵 ΘTTΘT 所有特征值位于区间 [1σs,1+σs] ,刻画了矩阵 Θ 中任取 s 列所形成矩阵的正交程度。
下面给出P1能精确s-稀疏信号的充分条件,
定理 假定矩阵 Θ 满足2s阶RIP性质,且RIP常数 σ2s21 ,则在 P1 中,对任意的 x0s
Δ(Θx0)=x0

对于非稀疏信号,也能进行较好地恢复。
定理 假定矩阵 Θ 满足2s阶RIP性质,且RIP常数 σ2s21 ,则在 P1 中,对任意的 x0N
||Δ(Θx0)x0||2C0σs(x)1s,C0σs(x)X=minzs||xz||XxNσs(K)X=minxkσs(x)XKN

那么对于 P1 ,为了精确恢复所有s-稀疏信号,观测次数 n 应该为多少?
定理 假定 ΘnN ,且使用 P1 恢复。那么,如果,
Δ(Θx0)=x0x2s,


nc1slog(Nc2s),c1=1log9c2=4

知识共享许可协议
本作品采用知识共享署名-相同方式共享 4.0 国际许可协议进行许可

  • 0
    点赞
  • 0
    评论
  • 1
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

打赏
文章很值,打赏犒劳作者一下
相关推荐
©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页

打赏

sam-X

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者