压缩感知(一)

压缩感知的提出基于一个非常朴素的问题,Ax=b能否有唯一解,当方程个数大于未知量个数时,这是肯定的。

classical answer

但是当m<<n时,特别是当所求的x的值只集中在某些区域,就很难获得所需的答案。

Shepp–Logan phantom

x满足一定的稀疏性时,就能够获得一定的唯一解。其中s-稀疏向量的定义如下

s:={xN:||x||0s}

压缩感知就是基于对原信号的观测y,其中y=Θx0ynxN,在n<<N的情况下,借助x0的稀疏性,反求原信号x

原理

RnRNΔ,则还原效果可以表示为||x0Δ(Θx0)||X,其中X表示一定范数。当x0中非0元素较少时,一种自然的解码即是如下规划问题的解

P0minxN||x||0s.t.Θx=y

如果我们对Θ作一定的限制,由P0就可以精确恢复x信号:

定理 假定ΘnN是一个任2s列均线性无关的矩阵。我们选择P0解码。那么对于任意的x0s

Δ(Θx0)=x0

上述定理即表示为了恢复嵌入在N维空间中的s-稀疏向量,需要2s次的观测。但是实际上P0是一个NP完全问题,为此,付出更多观测代价,找到以下更有效的算法,
P1minxN||x||1s.t.Θx=y

上述规划问题可以转换为以下形式,
P2mintNt1+t2+...+tNs.t.Θx=yti0,i=1,2,...,N.tjxjtj

为了得到P0P1等价的条件,首先定义指标集T{1,...,N}及向量vN,将v中指标在T中的元素取出构成新的向量vT#T
定义 Θ满足s-阶零空间性质,如果任意的vkerΘ,均有
||vT||1||vTc||1,T{1,...,N},#T=s.

上述定义可以理解为kerΘ的非零元素较为均匀地分布,而不是集中在某s个元素上。
定义 如果选择P1的解法,Θ满足且仅满足s-阶零空间性质,那么,对于任意的x0s
Δ(Θx0)=x0

但是给定一个矩阵的零空间性质很难在理论或者计算上证明,因此提出了另一种刻画方式矩阵的RIP(RestrictedIsometryProperty)
定义 如果存在常数σs[0,1)使得
(1σs)||x||2||Θx||2(1σs)||x||2

对任意的xs成立,其中σs被称为RIP常数。上述定义可以理解为矩阵ΘTTΘT所有特征值位于区间[1σs,1+σs],刻画了矩阵Θ中任取s列所形成矩阵的正交程度。
下面给出P1能精确s-稀疏信号的充分条件,
定理 假定矩阵Θ满足2s阶RIP性质,且RIP常数σ2s21,则在P1中,对任意的x0s
Δ(Θx0)=x0

对于非稀疏信号,也能进行较好地恢复。
定理 假定矩阵Θ满足2s阶RIP性质,且RIP常数σ2s21,则在P1中,对任意的x0N
||Δ(Θx0)x0||2C0σs(x)1s,C0σs(x)X=minzs||xz||XxNσs(K)X=minxkσs(x)XKN

那么对于P1,为了精确恢复所有s-稀疏信号,观测次数n应该为多少?
定理 假定ΘnN,且使用P1恢复。那么,如果,
Δ(Θx0)=x0x2s,


nc1slog(Nc2s),c1=1log9c2=4

知识共享许可协议
本作品采用知识共享署名-相同方式共享 4.0 国际许可协议进行许可

展开阅读全文

没有更多推荐了,返回首页