Apriltag使用

Apriltag使用

开源项目:https://github.com/AprilRobotics/apriltag

apriltag库是一个纯c的库,基本不依赖任何其他库。

Apriltag目前有版本2和版本3,版本3可兼容版本2.版本3的tag如下图:

在这里插入图片描述

tag2如下:

在这里插入图片描述
tag3是检测里面四个点,tag2是检测外面四个点。所以同样的大小的tag,tag2的位姿精度会更高。但tag3的检测速度更快(是tag2的两倍以上)。考虑位姿精度,目前我们使用tag2。

我们实际使用4个tag,id分别是tag36h11的1,2,3,4。

代码实现步骤
  1. 构建apriltag检测器并配置参数

     apriltag_family_t* tf =tag36h11_create();
     tag_det = apriltag_detector_create();
     apriltag_detector_add_family(tag_det, tf);
     tag_det->quad_decimate = 2; //降低图片分辨率,经实验该参数可大幅提升检测时间且不影响检测结果
     tag_det->refine_edges = 0; 
     tag_det->quad_sigma = 0; //高斯降噪,如果噪声较大的图片,可使用该参数
     tag_det->nthreads = 4; //使用几个线程来运行
     tag_det->debug = 0;
     
    
    

    这几个参数可以改,可以看看这几个参数的具体含义根据实际需求进行调试。

  2. 图片去畸变 apriltag默认输入图片为无畸变图片,我们必须输入去畸变图片。
    在这里插入图片描述
    在这里插入图片描述

实验结果显示,去畸变和不去畸变检测结果相差较大,这是由于marker的检测原理导致(检测直线段,未去畸变的是曲线)。故不可采用先检测角点,再将角点去畸变的方式。

图片去畸变较快的方法:

cv::initUndistortRectifyMap(intrinsics,distCoeffs,Mat(),intrinsics, cv::Size(COL,ROW), CV_32FC1, map1,map2); //只执行一次
 cv::remap(grayImage,un_gray_Image,map1,map2,CV_INTER_LINEAR);
  1. 检测角点(apriltag是第三方库,网上有很多资料,比我们写的文档更好。)

    image_u8_t image = { .width = m_image.cols,
                             .height = m_image.rows,
                             .stride = m_image.cols,
                             .buf = m_image.data
                           }; //转为apriltag库的格式
    
     zarray_t *detections = apriltag_detector_detect(tag_det, &image);//检测tag
    //利用zarray_size(detections)可知检测到几个tag。
    for (int i = 0; i < zarray_size(detections); i++)
        {
            apriltag_detection_t *det; 
            zarray_get(detections, i, &det); //将检测结果放入det里面
       }
    

    我们看看apriltag_detection_t结构体

    typedef struct apriltag_detection apriltag_detection_t;
    struct apriltag_detection
    {
        apriltag_family_t *family;
        int id;//tag的id
    
        int hamming;
        float decision_margin;
    
        matd_t *H; //代表从(-1,1), (1,1), (1,-1),(-1,-1)转到像素坐标
        double c[2]; //tag中心点在像素坐标下的坐标
        double p[4][2]; //像素坐标下的坐标,4个点从左下角开始逆时针旋转
    };
    
  2. 计算marker转到相机坐标的位姿(注意是从marker转到相机)

    首先谈谈坐标系,有三个坐标系,像素坐标系(二维)、tag坐标系(三维)、相机坐标系(三维)。我们以tag坐标系为基准,计算出相机的位姿。

    四个角点是从左下角逆时针旋转。四个角点在tag坐标系(遵循右手原则)下的坐标如下图。(s是tag的长度的一半),在
    在这里插入图片描述

    在这里插入图片描述

    计算tag转到相机坐标系,目前有两种方法,一种是直接使用april里面的位姿估计,一种是我们用3d-2d pnp求解。

    a. 构建pnp求解(不需要管库的坐标系,按照我们定义的坐标系即可)

    opencv的pnp求解

    $ p = K(RP + t) $

    P是第0帧图像下的坐标(即世界坐标系),p是当前帧的像素坐标,求解的R t是从第0帧图像(世界坐标系)转到当前帧的位姿。opencv用的JPL坐标系,从global 到 local.

    我们现在已知1.四个角点在tag坐标系下的坐标((-s,-s,0), (s,-s,0), (s,s,0), (-s,s,0)),2.四个角点在相机的像素坐标系下的坐标。我们需要求解tag坐标系转到camera坐标系的R,t。

    将第0帧图像下的坐标轴换成tag坐标系,认为tag坐标系就是世界坐标系。恰好就可以套用opencv的pnp。

    代码:

    objectPoints.push_back(cv::Point3d(-tag_half_size,-tag_half_size, 0));
    objectPoints.push_back(cv::Point3d( tag_half_size,-tag_half_size, 0));
    objectPoints.push_back(cv::Point3d( tag_half_size, tag_half_size, 0));
    objectPoints.push_back(cv::Point3d(-tag_half_size, tag_half_size, 0));
    imagePoints.push_back(cv::Point2d(det->p[0][0], det->p[0][1]));
    imagePoints.push_back(cv::Point2d(det->p[1][0], det->p[1][1]));
    imagePoints.push_back(cv::Point2d(det->p[2][0], det->p[2][1]));
    imagePoints.push_back(cv::Point2d(det->p[3][0], det->p[3][1]));
    cv::solvePnP(objectPoints, imagePoints, intrinsics, tmp_distCoeffs, rvec, tvec);
    //objectPoints就是上面4个点在tag坐标系下的3d坐标 imagePoints就是像素坐标系下的坐标
    

    b.使用apriltag自带的库求解。这就会涉及库的坐标系和我们的坐标系转换。

apriltag_detection_info_t tag_info;
tag_info.cx=cameraParam.m_cx;
tag_info.cy=cameraParam.m_cy;
tag_info.fx=cameraParam.m_fx;
tag_info.fy=cameraParam.m_fy;
tag_info.tagsize=find_mark.length;
tag_info.det=det;
apriltag_pose_t pose;

estimate_tag_pose(&tag_info, &pose);
Vector3d ori_relative_P;
Matrix3d ori_rotation_matrix3d;
memcpy(&ori_relative_P, pose.t->data, sizeof(Vector3d));
memcpy(&ori_rotation_matrix3d, pose.R->data, sizeof(Matrix3d));

目前我们使用a的做法。

  1. 调试经验:

    1.相机位姿的精度主要取决于tag四个角点的检测像素精度。根据以前测试经验,存在角点误检,导致位姿误差大。主要有两种情况:
    一、运动(特别是转弯)过程中照片有点模糊
    二、相机与tag存在较大的倾角(30度以外误差比较大)
    三、距离越远,误差越大,2m以外谨慎使用。
    可能还要其他情况导致误检。
    另外相机的内参也会影响计算的位姿,一定要标定好相机内参(重投影误差<0.15),做好畸变校正。
    故需要加入严格的判断,最好让相机是正对mark。

<think>嗯,用户想在Gazebo仿真环境中集成并使用AprilTag进行定位或检测。首先,我得回忆一下AprilTag是什么,它是类似于二维码的视觉基准标记,常用于机器人定位和姿态估计。Gazebo是机器人仿真工具,如何将两者结合起来呢? 根据用户提供的引用,引用[1]提到Gazebo可以和apriltags2_ros结合使用,放置AprilTags并模拟检测过程。引用[3]提到监听/tag_0和/camera之间的相对位置,转化成cmd_vel发布。这说明可能需要用到apriltags2_ros包来处理检测,并在Gazebo中添加AprilTag模型。 首先,我需要指导用户安装必要的ROS包,比如apriltags2_ros。然后,在Gazebo中创建或导入AprilTag模型。可能需要使用现有的模型库,或者自己生成SDF模型。引用[2]提到标定间墙壁贴很多二维码,可以模拟类似的环境。 接下来,配置机器人相机传感器,确保摄像头能发布图像话题到apriltags2_ros节点。可能需要调整相机参数,如焦距和分辨率,与实际硬件一致。然后启动检测节点,订阅图像话题,输出检测到的标签位姿。 最后,验证检测结果,可能需要在Rviz中可视化位姿,或者将位姿数据用于控制机器人移动,如引用[3]中的监听相对位置并发布cmd_vel。 用户可能需要生成相关问题,比如如何调整检测参数,处理多标签环境,或优化仿真性能。确保回答结构清晰,步骤正确,引用相关文献,比如引用[1]和[4]提到的仿真器重要性。</think>### 如何在 Gazebo 中集成和使用 AprilTag 进行定位或检测 #### 1. **安装依赖与 ROS 驱动包** - 需要安装 `apriltags2_ros` 包,这是专为 ROS 设计的 AprilTag 检测库: ```bash git clone https://github.com/christianrauch/apriltags2_ros.git ``` - 确保 Gazebo 与 ROS 环境已配置完成(如 ROS Noetic + Gazebo 11)[^1]。 #### 2. **在 Gazebo 中添加 AprilTag 模型** - **方法一**:使用现有模型库(如 `gazebo_apriltag_models`)直接导入预定义的 AprilTag SDF 模型。 - **方法二**:手动创建 AprilTag 的 SDF 文件,定义其几何形状、纹理和标签 ID。例如: ```xml <!-- tag_0.sdf --> <sdf version="1.6"> <model name="tag_0"> <static>true</static> <link name="link"> <visual name="visual"> <geometry><box><size>0.16 0.16 0.01</size></box></geometry> <material><script><uri>file://media/materials/scripts/apriltag.material</uri></script></material> </visual> </link> </model> </sdf> ``` #### 3. **配置机器人视觉传感器** - 在机器人模型中添加摄像头(如 RGB 相机),确保其话题名称(如 `/camera/image_raw`)与后续检测节点订阅的话题一致。 - 调整摄像头参数(如焦距、分辨率)以匹配真实硬件配置[^2]。 #### 4. **启动 AprilTag 检测节点** - 编写 launch 文件启动 `apriltags2_ros` 节点,订阅摄像头图像并发布检测结果: ```xml <launch> <node pkg="apriltags2_ros" type="apriltags2_ros_continuous_node" name="apriltag_detector"> <param name="camera_frame" type="str" value="camera_optical_frame" /> <param name="tag_family" type="str" value="tag36h11" /> <remap from="image_rect" to="/camera/image_raw"/> <remap from="camera_info" to="/camera/camera_info"/> </node> </launch> ``` #### 5. **验证与定位应用** - **可视化检测结果**:在 RViz 中订阅 `/tag_detections` 话题,查看标签的位姿(位置和方向)。 - **定位实现**:通过监听标签与相机的相对位姿(如 `/tag_0/pose`),结合机器人运动控制节点(如 `cmd_vel`),实现闭环定位[^3]。 --- ### 关键代码示例 ```python # 示例:订阅 AprilTag 检测结果并控制机器人移动 import rospy from apriltags2_ros.msg import AprilTagDetectionArray from geometry_msgs.msg import Twist def callback(detections): if len(detections.detections) > 0: tag_pose = detections.detections[0].pose.pose # 计算移动指令(例如:保持与标签的固定距离) cmd_vel = Twist() cmd_vel.linear.x = 0.1 * (tag_pose.position.z - 0.5) pub.publish(cmd_vel) rospy.init_node('apriltag_control') pub = rospy.Publisher('/cmd_vel', Twist, queue_size=1) rospy.Subscriber('/tag_detections', AprilTagDetectionArray, callback) rospy.spin() ``` ---
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值