算法系列之--Javascript和Kotlin的冒泡算法(原)

        算法系列文章目录在这里

介绍


        冒泡算法基本上是IT从业人员接触到的第一个算法,其原理就是依次对比相邻元素,大的放在后面,当全部list遍历之后,该list的最大值就会被置换到list的最后,详细步骤如下:

         1. 比较相邻的元素。如果第一个比第二个大,就交换他们两个。
         2. 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。这步做完后,最后的元素会是最大的数。
         3. 针对所有的元素重复以上的步骤,除了最后一个。
         4. 持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。

特点


        用于算法入门,实战中效率最差


效率


        平均时间复杂度O(n^2)

        最坏时间复杂度O(n^2)
        最优时间复杂度O(n)


备注


        原始版本的冒泡算法,即使最优情况下,时间复杂度也是O(n^2),那么如何可以达到O(n)呢?

        需要满足以下两个条件:

        1、当前序列是完全的有序序列

        2、添加一个标志位(didSwap),在第一次遍历时如果发现是有序序列,则停止循环即可。

        因此可以看出,这种O(n)的情况其实只是理想状态而已,并不具有实战性。


源码


Js源码

let list = [123456, 4, 8, 23, 5, 13, 323, 1, 9, 2, 3]
//最优标志位,只有当前已经是最优序列时简化后续的循环
let didSwap = false
for (let i = 0; i < list.length - 1; i++) {
    for (let j = 0; j < list.length - 1 - i; j++) {
        if (list[j] > list[j + 1]) {
            //交换相邻位置
            let temp = list[j]
            list[j] = list[j + 1]
            list[j + 1] = temp
            didSwap = true
        }
    }
    if (didSwap === false){
        //说明当前序列已经是正序,属于最优的情况,此时直接return即可,无需再做无用功,从而达到O(n)的时间复杂度
        return
    }
}


Kotlin源码

private var ARRAY_COUNT = 100000
/*
 * 获取随机数列
 */
private fun getSortList(): IntArray {
    var sortList = IntArray(ARRAY_COUNT)
    var ra = Random()
    for (i in sortList.indices) {
        sortList[i] = ra.nextInt(ARRAY_COUNT * 10)
    }
    return sortList
}
/*
 * 交换数列元素
 */
private fun swapByIndex(list: IntArray, x: Int, y: Int) {
    var temp = list[x]
    list[x] = list[y]
    list[y] = temp
}
/*
 * 冒泡算法
 */
private fun maoPao() {
    var sortList = getSortList()
    var didSwap = false
    for (i in 0 until sortList.size - 1) {
        for (j in 0 until sortList.size - 1 - i) {
            if (sortList[j] > sortList[j + 1]) {
                swapByIndex(sortList, j, j + 1)
                didSwap = true
            }
        }
        if (!didSwap) {
            return
        }
    }
}
        下一节我们来学习另外一种入门的排序算法---- 选择算法
        各个算法的Kotlini版本性能测试结果请看 算法系列之--Kotlin的算法实战比较 》 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值