sas-arima时间序列(打败自己是自己)

本文介绍了如何使用SAS进行时间序列分析,包括使用INTNX函数生成时序数据,通过PROC GLOT探索数据趋势,利用PROC ARIMA进行建模,通过自相关和偏相关检验确定模型参数,最后进行短期预测并可视化结果。
摘要由CSDN通过智能技术生成

在纯随机时间序列中各序列值之间不具有相关性,即时间序列中过去的行为对未来没有任何影响,序列在做毫无规律的随机波动,这种无记忆性的时间序列没有分析的意义。
一、准备时序数据:
intnx函数可生成时间序列,INTNX(custom-interval, start-from, increment <, ‘alignment’> )
start-from:开始的日期
increment:多少个间隔
custom-interval:可以是‘day’、‘month’、‘year’等
alighment:可以是:‘beginning’期初;‘middle’期中;‘end’期末;‘same’相同时间点,都可以分别用首字母b、m、e、s代替

data sastest.ex1;
input price @@;
time=intnx('week','13oct2006'd,_n_-1);

format time date7.;
cards;
10.3000 8.5269 9.0421 10.1727 9.9079 8.9714 9.0145 9.4738 9.5258 9.7017
10.0582 9.5292 8.9786 9.1743 9.8478 9.6218 9.0342 9.1891 9.6062 9.8946 
9.4853 9.2557 9.2805 9.5258 
Auto-ARIMA(自动自回归滑动平均模型)是一种自动化选择和拟合ARIMA模型的算法。ARIMA模型是一种广泛用于时间序列预测的统计模型,它结合了自回归(AR)和滑动平均(MA)的概念。 Auto-ARIMA的原理如下: 1. 自动选择差分阶数(d): 首先,Auto-ARIMA会通过观察时间序列的自相关图(ACF)和偏自相关图(PACF)来确定是否需要对时间序列进行差分以使其平稳。如果原始序列不平稳,会进行一阶差分,然后再检查差分后序列的平稳性。如果需要,可以进行多阶差分。 2. 自动选择自回归阶数(p)和滑动平均阶数(q): 一旦确定了差分阶数,Auto-ARIMA会使用信息准则(如AIC、BIC)或交叉验证来选择合适的自回归阶数(p)和滑动平均阶数(q)。它会尝试不同的组合,并选择具有最小信息准则值或最佳交叉验证误差的模型。 3. 拟合ARIMA模型: 在确定了差分阶数、自回归阶数和滑动平均阶数后,Auto-ARIMA会使用最大似然估计或最小二乘法来拟合ARIMA模型。这将得到一个最优的ARIMA模型,用于进行时间序列的预测。 Auto-ARIMA的优点在于它能够自动选择合适的模型参数,减轻了用户的工作负担,并提供了一个相对简单但有效的时间序列预测方法。它在许多实际应用中被广泛使用,特别是当用户没有领域专业知识或经验来手动选择模型参数时。 值得注意的是,Auto-ARIMA并不是万能的,它也有一些限制和假设。例如,它假设时间序列是线性的、具有固定的模型参数,并且没有季节性成分。在某些情况下,手动选择和调整ARIMA模型可能会更合适。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值