pytorch Model Linear实现线性回归CUDA版本

实验代码

 

import torch
import torch.nn as nn

#y = wx + b
class MyModel(nn.Module):
    def __init__(self):
        super(MyModel,self).__init__()
        #自定义代码
        # self.w = torch.rand([500,1],requires_grad=True)
        # self.b = torch.tensor(0,dtype=torch.float,requires_grad=True)
        # self.lr = nn.Linear(1,1)
        self.lr1 = nn.Linear(1,10)
        # self.lr2 = nn.Linear(10,20)
        # self.lr3 = nn.Linear(20,1)


    def forward(self,x):   #完成一次前项计算
        # y_predict = x*self.w + self.b
        # return y_predict
        # return self.lr(x)
        out1 = self.lr1(x)
        # out2 = self.lr2(out1)
        # out = self.lr3(out2)
        return out1



if __name__ == '__main__':
    model = MyModel()
    # print(model.parameters())
    for i in model.parameters():
        print(i)
        print("*"*100)
    # y_predict = model(torch.FloatTensor([10]))
    # print(y_predict)

 

  Linear实现线性回归,cuda版本

 

import torch
import torch.nn as nn
from torch import optim

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

class MyModel(nn.Module):
    def __init__(self):
        super(MyModel,self).__init__()
        self.lr = nn.Linear(1,1)

    def forward(self,x):
        return self.lr(x)

#准备数据  如果使用cuda,数据和模型需要to(device)
x = torch.rand([500,1]).to(device)
y_true = 3*x + 0.8
#实例化模型
model = MyModel().to(device)
#实例化优化器
optimizer = optim.Adam(model.parameters(),lr=0.1)
#实例化损失函数
loss_fn = nn.MSELoss()

for i in range(500):
    #梯度置零
    optimizer.zero_grad()
    #调用模型得到预测值
    y_predict = model(x)
    #损失函数,计算损失
    loss = loss_fn(y_predict,y_true)
    #反向传播计算梯度
    loss.backward()
    #更新参数
    optimizer.step()
    #打印部分数据
    if i%10 ==0:
        print(i,loss.item())

for param in model.parameters():
    print(param.item())

 

  

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,我可以为您提供使用PyTorch框架完成逻辑回归的代码示例。 首先,您需要导入PyTorch和其他必要的库: ```python import torch import torch.nn.functional as F import numpy as np ``` 然后,您可以定义一个LogisticRegression类来实现逻辑回归模型: ```python class LogisticRegression(torch.nn.Module): def __init__(self, input_dim): super(LogisticRegression, self).__init__() self.linear = torch.nn.Linear(input_dim, 1) def forward(self, x): x = self.linear(x) x = torch.sigmoid(x) return x ``` 在这个类中,我们定义了一个线性层,并使用sigmoid函数作为激活函数。这个类的输入维度可以根据您的需求进行更改。 接下来,您可以定义训练和测试函数: ```python def train(model, train_loader, criterion, optimizer, device): model.train() for data, target in train_loader: data, target = data.to(device), target.to(device) optimizer.zero_grad() output = model(data) loss = criterion(output, target) loss.backward() optimizer.step() def test(model, test_loader, device): model.eval() correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device), target.to(device) output = model(data) pred = torch.round(output) correct += pred.eq(target.view_as(pred)).sum().item() accuracy = 100. * correct / len(test_loader.dataset) print('Accuracy: {:.2f}%'.format(accuracy)) ``` 在train函数中,我们首先将数据和目标值移动到所选设备上,然后将梯度初始化为零。接下来,我们通过模型获取输出,计算损失,进行反向传播并更新参数。 在test函数中,我们首先将模型设置为评估模式,然后对测试集中的每个样本进行预测,并计算准确率。 最后,您可以使用以下代码来运行整个模型: ```python # 定义超参数 learning_rate = 0.01 batch_size = 64 num_epochs = 100 # 加载数据 train_data = np.load('train_data.npy') train_labels = np.load('train_labels.npy') test_data = np.load('test_data.npy') test_labels = np.load('test_labels.npy') train_dataset = torch.utils.data.TensorDataset(torch.from_numpy(train_data).float(), torch.from_numpy(train_labels).float()) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True) test_dataset = torch.utils.data.TensorDataset(torch.from_numpy(test_data).float(), torch.from_numpy(test_labels).float()) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=False) # 初始化模型、损失函数和优化器 model = LogisticRegression(input_dim=train_data.shape[1]) criterion = torch.nn.BCELoss() optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate) # 将模型和数据移动到所选设备上 device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model.to(device) # 训练模型 for epoch in range(num_epochs): train(model, train_loader, criterion, optimizer, device) test(model, test_loader, device) ``` 在这个示例中,我们使用了numpy生成一些虚拟数据,并将其分成训练集和测试集。然后,我们定义了一些超参数,初始化了模型、损失函数和优化器,并将它们移动到所选设备上。最后,我们迭代了一些epoch,对模型进行训练和测试,并打印出准确率。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值