深度Q网络:用PyTorch实现Atari游戏AI的进化之路

在2013年的一个深夜,DeepMind实验室的电脑屏幕上,一个像素化的小球正在《打砖块》游戏中不知疲倦地移动着。这个名为DQN的AI系统刚刚突破人类玩家的最高分记录,标志着深度学习与强化学习的首次完美联姻。如今,这个改变游戏AI历史的算法——Deep Q-Network(DQN)——已成为每位强化学习实践者的必修课。本文将带您重现这个里程碑式的突破,用PyTorch构建能够玩转经典Atari游戏的智能体,揭开深度强化学习的神秘面纱。

一、像素世界的马尔可夫抉择

在Atari的2600游戏机上,《太空入侵者》《打砖块》等经典游戏构建了一个个充满挑战的像素世界。每个游戏画面本质上是一个112×112的张量(经预处理后为84×84灰度图),智能体需要从这些二维像素中抽象出状态特征,这正是传统Q-learning力所不及之处。

传统Q-learning使用表格存储状态-动作值,但当状态空间达到Atari游戏的10^10000量级时,表格存储完全失效。深度Q网络通过卷积神经网络实现端到端的特征提取,将原始像素映射为最优动作决策,这种范式革新开启了深度强化学习的新纪元。

import torch
import torch
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

软考和人工智能学堂

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值