几句话之逻辑回归和Softmax回归

逻辑回归

用sigmoid函数,把线性回归的结果进行压缩,压缩到0~1之间。
然后,把压缩结果和分类输出y(假设是0和1)对应起来:压缩结果>0.5,y为1;压缩结果<0.5,y为0。
这样就相当于得到了概率函数,有了概率函数,就能写出似然函数。
当然了,为了得到模型的一般形式,必然要引入一些模型参数。

求这些模型参数,就用老办法:

  1. 写出似然函数
  2. 把似然函数加负号,转为损失函数
  3. 梯度下降求参数
    PS:
    似然函数求极值是求最大值,只能用求导方式求,不好算。
    所以加上负号,用梯度下降或牛顿法求(梯度下降是求最小值的)。

Softmax回归

Softmax回归是处理多分类问题的,逻辑回归是处理二分类的。
Softmax回归也是一样的套路,压缩==》得到概率函数==》写出似然函数==》转为损失函数==》梯度下降求参数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值