感知机完整推导

简介:

感知机(perceptron)是二分类的线形分类模型,输入为实例的特征向量,输出为实例的类别(+1,-1)。感知机对应于特征空间中将实例划分为正负两类的分离超平面;而且其是支持向量机与神经网络的基础。

我们的目标其实就是找出该分离超平面,根据统计学习的三要素:模型、策略、算法,我下面将从这三方面展开。


###感知机模型###
模型:

$$ f(x) = sign(w \cdot x+b) $$
模型中的 $w$ 和 $b$ 为感知机模型参数,$x$ 为实例的特征向量,$sign$ 为符号函数,即:
$$ sign(x) = \begin{cases} +1, & \text{$x\ge0$} \\[2ex] -1, & \text{$x\lt0$} \end{cases} $$
从该模型中很容易理解,我们要找的分离超平面就是线性方程:$w\cdot x+b=0$;

那么,接下来就只用解决如何通过给定的一些实例和其类别来确定参数 w w w b b b;该求解过程其实就是感知机学习过程。当学习到对应的感知机模型后,在预测部分只需将新的实例输入到感知机模型中即可获取其类别。


###策略###
给定一个线性可分的训练数据集,为了确定其感知机模型中的参数,我们就需要提出一个学习策略来解决,即定义一个经验损失函数并将该损失函数最小化。

感知机损失函数

损失函数有两个选择:

  1. 误分类点的总数
    该损失函数明显不是参数 w w w b b b的连续可导函数,不易优化。

  2. 误分类点到超平面的总距离
    该损失函数被感知机所采用,其数学表达式为:
    L ( w , b ) = − ∑ x i ∈ M y i ( w ⋅ x i + b ) L(w,b) = -\sum_{ {x_i}\in M}y_i(w\cdot x_i+b) L(w,b)=xiMyi(wxi+b)
    M M M 为误分类点集合, x i x_i xi为误分类点, y i y_i yi为对应点的类别。

**附上该表达式的证明:**

取训练数据集中的任一个数据,将其特征向量记为$x_0$,将$x_0$在分离超平面$w\cdot x+b=0$上的投影点记为$x_1$,则该数据到分离超平面的距离为$\vert \vec {x_0x_1}\vert$,则

KaTeX parse error: No such environment: eqnarray at position 7: \begin{̲e̲q̲n̲a̲r̲r̲a̲y̲}̲ \vert w\cdot …
又对于误分类数据 ( x i , y i ) (x_i,y_i) (xi,yi)来说, − y i ( w ⋅ x i + b ) > 0 -y_i(w\cdot x_i+b)>0 yi(wxi+b)>0,则误分类点 x i x_i xi到分离超平面的距离为 − 1 ∥ W ∥ y i ( w ⋅ x i + b ) -\frac {1}{\Vert W\Vert}y_i(w\cdot x_i+b) W1yi(wxi+b);所以误分类点到分离超平面的总距离为
− 1 ∥ W ∥ ∑ x i ∈ M y i ( w ⋅ x i + b ) -\frac {1}{\Vert W \Vert}\sum_{ {x_i}\in M}y_i(w\cdot x_i+b) W1

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值