具体数学第2章笔记

2.1 记号

本小节引入了和式的记号 ∑ \sum
具体有:

  1. ∑ k = 1 n a k \displaystyle\sum_{k=1}^n a_k k=1nak
    表示 a 1 + a 2 + . . . + a n a_1+a_2 + ...+ a_n a1+a2+...+an
  2. 还可以写成一般形式

∑ 1 ⩽ k ⩽ n a k \sum_{\mathclap{1\leqslant k \leqslant n}} a_{k} 1knak

一般形式允许对不连续的整数进行求和,好处是便于处理指标变换.

  1. 艾弗森约定:
    对于

∑ k a k [ p ( k ) ] \sum_k a_k[p(k)] kak[p(k)]

如果 p ( k ) p(k) p(k)为假, 那么项 a k [ p ( k ) ] a_k[p(k)] ak[p(k)]等于零.

2.2 和式和递归式

和式和递归式之间存在着密切的关系.

和式

s n = ∑ k = 0 n a k s_n = \sum_{k=0}^n a_k sn=k=0nak

等价于递归式

S 0 = a 0 ; S n = S n − 1 + a n , n > 0 ; \begin{aligned} S_0 &= a_0;\\ S_n &= S_{n-1} + a_n, n>0; \end{aligned} S0Sn=a0;=Sn1+an,n>0;

于是通过上一章的成套方法可以顺利的求出它的封闭形式解为
S n = a ( n + 1 ) + b ( n + 1 ) n / 2 S_n = a(n+1)+b(n+1)n/2 Sn=a(n+1)+b(n+1)n/2

许多递归式也可以转化成为和式.

递归式转成和式的思想是用一个求和因子 S n S_n Sn来乘于两边.
对于任何形如

(2.9) a n T n = b n T n − 1 + C n \tag{2.9} a_nT_n = b_nT_{n-1} + C_n anTn=bnTn1+Cn(2.9)

的递归式,都可以转化为:

s n a n T n = s n b n T n − 1 + s n C n s_na_nT_n = s_nb_nT_{n-1} + s_nC_n snanTn=snbnTn1+snCn

只需要想办法让

s n b n = s n − 1 a n − 1 s_nb_n = s_{n-1}a_{n-1} snbn=sn1an1

(2.9)就可以变成

S n = S n − 1 + s n C n S_n= S_{n-1}+ s_nC_n Sn=Sn1+snCn

从而

S n = s 0 a 0 T 0 + ∑ k = 1 n s k c k ∵ s 0 a 0 = s 1 b 1 ∴ S n = s 1 b 1 T 0 + ∑ k = 1 n s k c k \begin{aligned} S_n &= s_0a_0T_0 + \sum_{k=1}^n s_kc_k \\ \because s_0a_0 &= s_1b_1\\ \therefore S_n&= s_1b_1T_0 + \sum_{k=1}^n s_kc_k \end{aligned} Sns0a0Sn=s0a0T0+k=1nskck=s1b1=s1b1T0+k=1nskck

而原来的(2.9)就变成了

a n T n = b n T n − 1 + C n s n a n T n = s n b n T n − 1 + s n C n . . . . 两 边 同 时 乘 于 s n s n a n T n = s 1 b 1 T 0 + ∑ k = 1 n s k c k . . . . 转 换 成 和 式 T n = s 1 b 1 T 0 + ∑ k = 1 n s k c k s n a n \begin{aligned} a_nT_n &= b_nT_{n-1} + C_n\\ s_na_nT_n &= s_nb_nT_{n-1} + s_nC_n....{\footnotesize两边同时乘于}s_n\\ s_na_nT_n &=s_1b_1T_0 + \sum_{k=1}^n s_kc_k ....{\footnotesize转换成和式}\\ T_n &= \frac{s_1b_1T_0 + \displaystyle \sum_{k=1}^n s_kc_k}{s_na_n} \end{aligned} anTnsnanTnsnanTnTn=bnTn1+Cn=snbnTn1+snCn....sn=s1b1T0+k=1nskck....=snans1b1T0+k=1nskck

n = 1 n=1 n=1时,

T 1 = s 1 b 1 T 0 + s 1 c 1 s 1 a 1 = b 1 T 0 + c 1 a 1 T_1= \frac{s_1b_1T_0 + s_1c_1}{s_1a_1} = \frac{b_1T_0 + c_1}{a_1} T1=s1a1s1b1T0+s1c1=a1b1T0+c1

这时 s 1 s_1 s1不见了,也就是它可以等于除了0以外的任何值

s n = s n − 1 a n − 1 b n s_n=\frac{s_{n-1}a_{n-1}}{b_n} sn=bnsn1an1

可以被展开成

s n = a n − 1 a n − 1 ⋯ a 1 b n b n − 1 ⋯ b 2 s_n= \frac{a_{n-1}a_{n-1} \cdots a_1}{b_nb_{n-1}\cdots b_2} sn=bnbn1b2an1an1a1

之所以分子终止于 b 2 b_2 b2, 是因为在 T 1 T_1 T1中, s 1 s_1 s1的值不见了.只要不为零就行.因此 s n s_n sn的最小值只需要求解到 s 2 s_2 s2

只要所有的 a a a和所有的 b b b都不为零, 那么求和因子方法就能奏效.

2.3 和式的处理

  • 本小节介绍了几个公式,以及扰动法
    成功处理和式的关机在于,将一个 Σ \Sigma Σ改变成另一个更简单的,或者更接近某个目标的 Σ \Sigma Σ
分配律:

运用分配律我们就能把常数移入或者移出 Σ \Sigma Σ

(2.15) ∑ k ∈ K c a k = c ∑ k ∈ K a k ; \tag{2.15} \sum_{k \in K}ca_k = c\sum_{k\in K}a_k; kKcak=ckKak;(2.15)

结合律:

运用结合律,我们就可以把一个 Σ \Sigma Σ分成两个部分,或者将两个 Σ \Sigma Σ组合成一个

(2.16) ∑ k ∈ K ( a k + b k ) = ∑ k ∈ K a k + ∑ k ∈ K b k ; \tag{2.16} \sum_{k \in K} (a_k + b_k) = \sum_{k \in K}a_k + \sum_{k \in K} b_k; kK(ak+bk)=kKak+kKbk;(2.16)

交换律:

运用交换律,我们可以按照意愿采用的任何方式来重新将求和项排序. 这里的 p ( k ) p(k) p(k)是所有整数集合中的任意一个排列.

(2.17) ∑ k ∈ K a k = ∑ p ( k ) ∈ K a p ( k ) \tag{2.17} \sum_{k \in K} a_k = \sum_{p(k) \in K}a_{p(k)} kKak=p(k)Kap(k)(2.17)

扰动法:

把一项分出去的运算是扰动法的基础.利用扰动法常常可以用封闭形式来计算一个和式.

S n = ∑ 0 ⩽ k ⩽ n a k S n + a n + 1 = ∑ 0 ⩽ k ⩽ n + 1 a k = a 0 + ∑ 1 ⩽ k ⩽ n + 1 a k = a 0 + ∑ 1 ⩽ k + 1 ⩽ n + 1 a k + 1 = a 0 + ∑ 0 ⩽ k ⩽ n a k + 1 \begin{aligned} S_n &= \sum_{0\leqslant k \leqslant n } a_k\\ S_n + a_{n+1} &=\sum_{0\leqslant k \leqslant n+1 } a_k \\ &= a_0 + \sum_{1\leqslant k \leqslant n+1 }a_k \\ &=a_0 + \sum_{1\leqslant k+1 \leqslant n+1 }a_{k+1} \\ &=a_0 + \sum_{0\leqslant k \leqslant n }a_{k+1} \\ \end{aligned} SnSn+an+1=0knak=0kn+1ak=a0+1kn+1ak=a0+1k+1n+1ak+1=a0+0knak+1

如果可以用 S n S_n Sn表示最后的那个和式,就可以得到一个方程. 它的解就是我们所求的和式.

2.4 多重和式

多重和式

∑ i ⩽ j , k ⩽ 3 a j b k = a 1 b 1 + a 1 b 2 + a 1 b 3 + a 2 b 1 + a 2 b 2 + a 2 b 3 + a 3 b 1 + a 3 b 2 + a 3 b 3 + ∑ i ⩽ j , k ⩽ 3 a j b k = ( ∑ j = 1 3 a j ) ( ∑ k = 1 3 b k ) \begin{aligned} \sum_{i \leqslant j, k \leqslant 3} a_j b_k = a_1b_1+a_1b_2+a_1b_3+a_2b_1+a_2b_2+a_2b_3+a_3b_1+a_3b_2+a_3b_3+ \end{aligned} \\ \sum_{i \leqslant j, k \leqslant 3} a_j b_k = (\sum^3_{j=1}a_j)(\sum_{k=1}^3 b_k) ij,k3ajbk=a1b1+a1b2+a1b3+a2b1+a2b2+a2b3+a3b1+a3b2+a3b3+ij,k3ajbk=(j=13aj)(k=13bk)

对于多重和式,可以使用交换求和顺序.

(2.27) ∑ j ∑ k a j , k p [ ( j , k ) ] = ∑ p ( j , k ) a j , k = ∑ k ∑ j a j , k p [ ( j , k ) ] \tag{2.27} \sum_j\sum_k a_{j,k}p[(j,k)] = \sum_{p(j,k)}a_{j,k} = \sum_k\sum_j a_{j,k}p[(j,k)] jkaj,kp[(j,k)]=p(j,k)aj,k=kjaj,kp[(j,k)](2.27)

交换顺序(2.27)有两类变形

  1. 简易型:

(2.29) ∑ j ∈ J ∑ k ∈ K a j b k = ∑ k ∈ K ∑ j ∈ J a j b k \tag{2.29} \sum_{j \in J}\sum_{k \in K} a_j b_k = \sum_{k \in K}\sum_{j \in J} a_j b_k jJkKajbk=kKjJajbk(2.29)

  1. 复杂性

(2.30) ∑ j ∈ J ∑ k ∈ K ( j ) a j b k = ∑ k ∈ K ′ ∑ j ∈ J ′ ( k ) a j b k \tag{2.30} \sum_{j \in J}\sum_{k \in K(j)} a_j b_k = \sum_{k \in K'}\sum_{j \in J'(k)} a_j b_k jJkK(j)ajbk=kKjJ(k)ajbk(2.30)

切比雪夫单调不等式

这个书中仍然只是一笔点过, 百度一下补充知识.
切比雪夫单调不等式可以比较两组数积的和及两组数的线性和的积的大小

( ∑ k = 1 n a k ) ( ∑ k = 1 n b k ) ⩽ n ∑ k = 1 n a k b k , a 1 ⩽ . . . ⩽ a n 且 b 1 ⩽ . . . ⩽ b n ( ∑ k = 1 n a k ) ( ∑ k = 1 n b k ) ⩾ n ∑ k = 1 n a k b k , a 1 ⩽ . . . ⩽ a n 且 b 1 ⩾ . . . ⩾ b n \bigg( \sum_{k=1}^n a_k\bigg) \bigg(\sum_{k=1}^n b_k\bigg) \leqslant n\sum_{k=1}^n a_k b_k , a_1 \leqslant... \leqslant a_n 且 b_1\leqslant ... \leqslant b_n\\ \bigg( \sum_{k=1}^n a_k\bigg) \bigg(\sum_{k=1}^n b_k\bigg) \geqslant n\sum_{k=1}^n a_k b_k , a_1 \leqslant... \leqslant a_n 且 b_1\geqslant ... \geqslant b_n\\\\ (k=1nak)(k=1nbk)nk=1nakbk,a1...anb1...bn(k=1nak)(k=1nbk)nk=1nakbk,a1...anb1...bn

证明:
假设有和式
S = ∑ 1 ⩽ j &lt; k ⩽ n ( a k − a j ) ( b k − b j ) S=\sum_{1 \leqslant j &lt; k \leqslant n}(a_k-a_j)(b_k-b_j) S=1j<kn(akaj)(bkbj)

当交换j和k时, 仍然有对称性

S = ∑ 1 ⩽ k &lt; j ⩽ n ( a j − a k ) ( b j − b k ) = ∑ 1 ⩽ k &lt; j ⩽ n ( a k − a j ) ( b k − b j ) \begin{aligned} S&amp;=\sum_{1 \leqslant k &lt; j \leqslant n}(a_j-a_k)(b_j-b_k)\\ &amp;=\sum_{1 \leqslant k &lt; j \leqslant n}(a_k-a_j)(b_k-b_j)\\ \end{aligned} \\ S=1k<jn(ajak)(bjbk)=1k<jn(akaj)(bkbj)

在矩阵的例子中可以看到:

[ 1 ⩽ j &lt; k ⩽ n ] + [ 1 ⩽ k &lt; j ⩽ n ] = [ 1 ⩽ j , k ⩽ n ] − [ 1 ⩽ j = k ⩽ n ] [1\leqslant j&lt;k\leqslant n] + [1\leqslant k&lt;j\leqslant n] = [1\leqslant j, k \leqslant n]-[1 \leqslant j=k \leqslant n] [1j<kn]+[1k<jn]=[1j,kn][1j=kn]

即相当于矩阵的全部元素扣去对角线上的元素.

2 S = ∑ 1 ⩽ j &lt; k ⩽ n ( a k − a j ) ( b k − b j ) + ∑ 1 ⩽ k &lt; j ⩽ n ( a k − a j ) ( b k − b j ) = ∑ 1 ⩽ j , k ⩽ n ( a j − a k ) ( b j − b k ) − ∑ 1 ⩽ j = k ⩽ n ( a j − a k ) ( b j − b k ) ∵ ∑ 1 ⩽ j = k ⩽ n ( a j − a k ) ( b j − b k ) = 0 ∴ 2 S = ∑ 1 ⩽ j , k ⩽ n ( a j − a k ) ( b j − b k ) = ∑ 1 ⩽ j , k ⩽ n a j b j − ∑ 1 ⩽ j , k ⩽ n a j b k − ∑ 1 ⩽ j , k ⩽ n a k b j + ∑ 1 ⩽ j , k ⩽ n a k b k = 2 ∑ 1 ⩽ j , k ⩽ n a k b k − 2 ∑ 1 ⩽ j , k ⩽ n a j b k = 2 ∑ 1 ⩽ k ⩽ n ∑ 1 ⩽ j ⩽ n a k b k − 2 ∑ 1 ⩽ j , k ⩽ n a j b k = 2 ∑ 1 ⩽ k ⩽ n a k b k ∑ 1 ⩽ j ⩽ n 1 − 2 ∑ 1 ⩽ j ⩽ n a j b k = 2 n ∑ 1 ⩽ k ⩽ n a k b k − 2 ∑ 1 ⩽ j , k ⩽ n a j b k = 2 n ∑ 1 ⩽ k ⩽ n a k b k − 2 ( ∑ 1 ⩽ k n a k ) ( ∑ 1 ⩽ k n b k ) ∴ S = n ∑ 1 ⩽ k ⩽ n a k b k − ( ∑ 1 ⩽ k n a k ) ( ∑ 1 ⩽ k n b k ) ∴ ∑ 1 ⩽ k &lt; j ⩽ n ( a j − a k ) ( b j − b k ) = n ∑ 1 ⩽ k ⩽ n a k b k − ( ∑ 1 ⩽ k n a k ) ( ∑ 1 ⩽ k n b k ) \begin{aligned} &amp;\\ 2S&amp;= \sum_{1 \leqslant j &lt; k \leqslant n}(a_k-a_j)(b_k-b_j) +\sum_{1 \leqslant k &lt; j \leqslant n}(a_k-a_j)(b_k-b_j)\\ &amp;=\sum_{1\leqslant j, k \leqslant n}(a_j - a_k)(b_j-b_k) - \sum_{1 \leqslant j=k \leqslant n}(a_j - a_k)(b_j-b_k) \\ \because &amp; \sum_{1 \leqslant j=k \leqslant n}(a_j - a_k)(b_j-b_k) =0\\ \therefore 2S &amp;= \sum_{1\leqslant j, k \leqslant n}(a_j - a_k)(b_j-b_k) \\ &amp;= \sum_{1\leqslant j, k \leqslant n}a_jb_j - \sum_{1\leqslant j, k \leqslant n}a_jb_k -\sum_{1\leqslant j, k \leqslant n}a_kb_j +\sum_{1\leqslant j, k \leqslant n}a_kb_k \\ &amp;=2\sum_{1\leqslant j, k \leqslant n}a_kb_k- 2\sum_{1\leqslant j,k \leqslant n}a_jb_k\\ &amp;=2\sum_{1\leqslant k \leqslant n}\sum_{1\leqslant j\leqslant n}a_kb_k -2\sum_{1\leqslant j,k \leqslant n}a_jb_k\\ &amp;=2\sum_{1\leqslant k \leqslant n}a_kb_k\sum_{1\leqslant j \leqslant n}1 -2\sum_{1\leqslant j \leqslant n}a_jb_k\\ &amp;=2n\sum_{1\leqslant k \leqslant n}a_kb_k -2\sum_{1\leqslant j,k \leqslant n}a_jb_k\\ &amp;=2n\sum_{1\leqslant k \leqslant n}a_kb_k -2\big(\sum_{1\leqslant k}^na_k\big)(\sum_{1\leqslant k}^nb_k\big)\\ \therefore S&amp;=n\sum_{1\leqslant k \leqslant n}a_kb_k -\big(\sum_{1\leqslant k}^na_k\big)(\sum_{1\leqslant k}^nb_k\big)\\ \therefore \sum_{1 \leqslant k &lt; j \leqslant n}(a_j-a_k)(b_j-b_k) \\ &amp;= n\sum_{1\leqslant k \leqslant n}a_kb_k -\big(\sum_{1\leqslant k}^na_k\big)(\sum_{1\leqslant k}^nb_k\big)\\ \end{aligned} \\ 2S2SS1k<jn(ajak)(bjbk)=1j<kn(akaj)(bkbj)+1k<jn(akaj)(bkbj)=1j,kn(ajak)(bjbk)1j=kn(ajak)(bjbk)1j=kn(ajak)(bjbk)=0=1j,kn(ajak)(bjbk)=1j,knajbj1j,knajbk1j,knakbj+1j,knakbk=21j,knakbk21j,knajbk=21kn1jnakbk21j,knajbk=21knakbk1jn121jnajbk=2n1knakbk21j,knajbk=2n1knakbk2(1knak)(1knbk)=n1knakbk(1knak)(1knbk)=n1knakbk(1knak)(1knbk)

这样我们就得到了切比雪夫不等式的一个特例.

(2.34) ∴ ( ∑ 1 ⩽ k n a k ) ( ∑ 1 ⩽ k n b k ) = n ∑ 1 ⩽ k ⩽ n a k b k − ∑ 1 ⩽ k &lt; j ⩽ n ( a j − a k ) ( b j − b k ) \tag{2.34} \begin{aligned} \therefore \big(\sum_{1\leqslant k}^na_k\big)(\sum_{1\leqslant k}^nb_k\big)&amp;=n\sum_{1\leqslant k \leqslant n}a_kb_k -\sum_{1 \leqslant k &lt; j \leqslant n}(a_j-a_k)(b_j-b_k) \end{aligned} (1knak)(1knbk)=n1knakbk1k<jn(ajak)(bjbk)(2.34)

2.5一般性的方法

  • 方法0: 查找公式
    与本书的精神不一致.
  • 方法1: 猜测答案,用归纳法证明之
    它仍然不是我们想要寻找的方法.
  • 方法2: 对和式使用扰动法
  • 方法3: 建立成套方法
  • 方法4: 用积分替换和式
  • 方法5: 展开和收缩
  • 方法6: 用有限微积分
  • 方法7: 用生成函数

2.6 有限微积分和无限微积分

下降阶乘幂

读成" x x x直降 m m m次"

(2.43) x m ‾ = x ( x − 1 ) . . . ( x − m + 1 ) ⏞ m个因子 \tag{2.43} x^{\underline{m}} = \overbrace{x(x-1)...(x-m+1)}^{\text{m个因子}} xm=x(x1)...(xm+1) m个因子(2.43)

上升阶乘幂

读成" x x x直升 m m m次"

(2.44) x m ‾ = x ( x + 1 ) . . . ( x + m − 1 ) ⏞ m个因子 \tag{2.44} x^{\overline{m}} = \overbrace{x(x+1)...(x+m-1)}^{\text{m个因子}} xm=x(x+1)...(x+m1) m个因子(2.44)

(2.45) Δ ( x m ‾ ) = ( x + 1 ) m ‾ − x m ‾ = m x m − 1 ‾ \tag{2.45}\\ \begin{aligned} \Delta(x^{\underline{m}}) &amp;= (x+1)^{\underline{m}} -x^{\underline{m}} \\ &amp;= mx^{\underline{m-1}} \end{aligned} Δ(xm)=(x+1)mxm=mxm1(2.45)

(2.46) g ( x ) = Δ f ( x ) 当 且 仅 当 ∑ g ( x ) δ x = f ( x ) + C \tag{2.46}\\ g(x) = \Delta f(x) {\footnotesize当且仅当} \sum g(x)\delta x=f(x) +C g(x)=Δf(x)g(x)δx=f(x)+C(2.46)

(2.47) ∑ a b g ( x ) δ ( x ) = f ( x ) ∣ a b = f ( b ) − f ( a ) \tag{2.47} \textstyle \sum^b_ag(x)\delta(x)=\left. f(x) \right| ^b _a = f(b) - f(a) abg(x)δ(x)=f(x)ab=f(b)f(a)(2.47)
a a a b b b是整数且 b ⩾ a b\geqslant a ba时, ∑ a b g ( x ) δ ( x ) \textstyle \sum^b_ag(x)\delta(x) abg(x)δ(x)的切确含义是:
(2.48) ∑ a b g ( x ) δ ( x ) = ∑ k = a b − 1 g ( x ) = ∑ a ⩽ k &lt; b g ( k ) , 整 数 b ⩾ a . \tag{2.48} \textstyle \sum^b_ag(x)\delta(x)=\displaystyle \sum_{k=a}^{b-1}g(x) = \sum_{a \leqslant k &lt; b} g(k), \footnotesize 整数b \geqslant a. abg(x)δ(x)=k=ab1g(x)=ak<bg(k),ba.(2.48)

接下来出现一个匪夷所思,叹为观止的公式:
(2.50) ∑ 0 ⩽ k &lt; n k m ‾ = k m + 1 ‾ m + 1 ∣ 0 m = n m + 1 ‾ ( m + 1 ) \tag{2.50} \sum_{0 \leqslant k &lt; n} k^{\underline m} = \left.{k^{\underline{m+1}}} \over {m+1} \right | ^m _0 = \frac {n^{\underline{m+1}}} {(m+1)} 0k<nkm=m+1km+10m=(m+1)nm+1(2.50)
这是因为
∑ 0 ⩽ k &lt; n k m ‾ = ∑ 0 n k m ‾ δ ( x ) . . . . . . . ( 2.48 ) = f ( x ) ∣ 0 n . . . . . . . ( 2.47 ) = k m + 1 ‾ m + 1 ∣ 0 m . . . . . . . ( 2.46 ) = n m + 1 ‾ ( m + 1 ) − 0 . . . . . . . ( 2.47 ) \begin{aligned} &amp;\sum_{0 \leqslant k &lt; n} k^{\underline m} \\ = &amp; \textstyle \sum^n_0k^{\underline m}\delta(x)&amp;.......(2.48)\\ = &amp; \left. f(x) \right | ^n _0 &amp;.......(2.47)\\ = &amp;\left.{k^{\underline{m+1}}} \over {m+1} \right | ^m _0 &amp;.......(2.46)\\ = &amp;\frac {n^{\underline{m+1}}} {(m+1)} - 0 &amp;.......(2.47)\\ \end{aligned} ====0k<nkm0nkmδ(x)f(x)0nm+1km+10m(m+1)nm+10.......(2.48).......(2.47).......(2.46).......(2.47)

(2.50)也暗示了对于范围 0 ⩽ k &lt; n 0\leqslant k &lt;n 0k<n求和要比对范围 0 ⩽ k ⩽ n 0\leqslant k \leqslant n 0kn更简单. 前者等于 f ( n ) − f ( 0 ) = f ( n ) f(n)-f(0) = f(n) f(n)f(0)=f(n)
后者必须计算成 f ( n + 1 ) − f ( 1 ) f(n+1)-f(1) f(n+1)f(1)

x 0 ‾ = 1 x 1 ‾ = x x 2 ‾ = x ( x − 1 ) x 3 ‾ = x ( x − 2 ) ( x − 1 ) \begin{aligned} x^{\underline 0} &amp;= 1\\ x^{\underline 1} &amp;= x\\ x^{\underline 2} &amp;= x(x-1)\\ x^{\underline 3} &amp;= x(x-2)(x-1)\\ \end{aligned} x0x1x2x3=1=x=x(x1)=x(x2)(x1)

练手一下

∑ 0 ⩽ k &lt; n k = ∑ 0 ⩽ k &lt; n k 1 ‾ = n 1 + 1 ‾ ( 1 + 1 ) = n 2 ‾ 2 = n ( n − 1 ) 2 \begin{aligned} &amp;\sum_{0 \leqslant k &lt; n} k \\ =&amp;\sum_{0 \leqslant k &lt; n} k^{\underline 1}\\ =&amp; \frac {n^{\underline{1+1}}} {(1+1)} \\ =&amp;n^{\underline 2} \over {2}\\ =&amp;{n(n-1) \over 2} \end{aligned} ====0k<nk0k<nk1(1+1)n1+12n22n(n1)

x − 1 ‾ = 1 x + 1 x − 2 ‾ = 1 ( x + 1 ) ( x + 2 ) x − 3 ‾ = 1 ( x + 1 ) ( x + 2 ) ( x + 3 ) \begin{aligned} x^{\underline {-1}} &amp;= {1 \over x+1} \\ x^{\underline {-2}} &amp;= {1 \over (x+1)(x+2)} \\ x^{\underline {-3}} &amp;= {1 \over (x+1)(x+2)(x+3)}\\ \end{aligned} x1x2x3=x+11=(x+1)(x+2)1=(x+1)(x+2)(x+3)1

也就是

(2.51) x − m ‾ = 1 ( x + 1 ) ( x + 2 ) . . . ( x + m ) , m &gt; 0 \tag{2.51} x^{\underline {-m}} = {1 \over (x+1)(x+2)...(x+m)},m&gt;0 xm=(x+1)(x+2)...(x+m)1,m>0(2.51)

(2.52) x m + n ‾ = x m ‾ ( x − m ) n ‾ \tag{2.52} x^{\underline {m+n}} = x^{\underline {m}}(x-m)^{\underline n} xm+n=xm(xm)n(2.52)

下降幂和式的完整描述
(2.53) ∑ a b x m ‾ δ x = { x m + 1 ‾ m + 1 ∣ a b , m ̸ = 1 , H x ∣ a b , m = − 1. \tag{2.53} \sum^b_ax^{\underline m}\delta x = \left \{ \begin{array}{cc} \begin{aligned} &amp;\left. {x^{\underline {m+1}} \over m+1} \right|^b_a, &amp;m \not =1,\\ &amp;\left. H_x \right|^b_a, &amp;m = -1. \end{aligned} \end{array} \right. abxmδx=m+1xm+1ab,Hxab,m̸=1,m=1.(2.53)

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值