具体数学笔记2.6

这小节的内容用微积分 ∫ \int 类比累加 ∑ \sum , 读起来天马星空. 于是根据我自己的理解重新写了这篇笔记. 记号里和书中的有些许不同

在第二章的前几节中,已经学习了多种直接处理合适的方法, 现在需要用更加广阔的视野,从更高的层次来审视求和问题.

从微分说起, 微分是指f(x) 在x足够小时,函数值的变化量:
即:

lim ⁡ Δ x → 0 f ( x + Δ x ) − f ( x ) Δ x \lim_{\Delta x \rightarrow 0} {f(x+\Delta x) - f(x)\over{\Delta x}} Δx0limΔxf(x+Δx)f(x)

对应于"微分", 本小节引入了"差分"的概念
Δ f ( x ) = f ( x + 1 ) − f ( x ) \Delta f(x) = f(x+1) - f(x) Δf(x)=f(x+1)f(x)
这是对微分的有限模拟. 当 lim ⁡ Δ x → 0 \lim_{\Delta x \rightarrow 0} Δx0lim时, Δ x = 1 \Delta x =1 Δx=1时我们所能达到的"极限"

为了模仿导数求导过程,具体数学引入了下降阶乘幂: x m ‾ x^{\underline m} xm读作" x x x直降 m m m次". 表示:
(2.43) x m ‾ = x ( x − 1 ) ⋯ ( x − m + 1 ) ⏞ m 个 因 子 , 整 数 m ⩾ 0 x^{\underline m} =\overbrace {x(x-1)\cdots (x-m+1)}^{\tiny m个因子} ,整数m\geqslant 0 \tag{2.43} xm=x(x1)(xm+1) m,m0(2.43)
另有:上升阶乘幂: x m ‾ x^{\overline m} xm读作" x x x直升 m m m次". 表示:
(2.43) x m ‾ = x ( x + 1 ) ⋯ ( x + m − 1 ) ⏞ m 个 因 子 , 整 数 m ⩾ 0 x^{\overline m} =\overbrace {x(x+1)\cdots (x+m-1)}^{\tiny m个因子} ,整数m\geqslant 0 \tag{2.43} xm=x(x+1)(x+m1) m,m0(2.43)

由此就有一个堪比微分求导公式的:
(2.45) Δ ( x m ‾ ) = m x m − 1 ‾ \Delta(x^{\underline m})= mx^{\underline{m-1}} \tag{2.45} Δ(xm)=mxm1(2.45)
有一个堪比不定积分的不定和式:
(2.46) g ( x ) = Δ f ( x ) ↔ ∑ g ( x ) δ ( x ) = f ( x ) + C 其 中 C 是 满 足 p ( x + 1 ) = p ( x ) 的 任 意 一 个 函 数 p ( x ) \tag{2.46} g(x) = \Delta f(x) \leftrightarrow \\ \sum g(x)\delta(x) = f(x) + C\\ {\footnotesize 其中C是满足p(x+1)=p(x)的任意一个函数p(x)} g(x)=Δf(x)g(x)δ(x)=f(x)+CCp(x+1)=p(x)p(x)(2.46)

还可以有一个堪比定积分的和式
(2.47) ∑ a b g ( x ) δ x = f ( x ) ∣ a b = f ( b ) − f ( a ) \tag{2.47} \sum^b_a g(x)\delta x = \left. f(x) \right | ^b_a = f(b) - f(a) abg(x)δx=f(x)ab=f(b)f(a)(2.47)
它的切确含义是:
(2.48) ∑ a b g ( x ) δ ( x ) = ∑ k = a b − 1 g ( x ) = ∑ a ⩽ k &lt; b g ( k ) ,      整 数 b ⩾ a . \tag{2.48} \textstyle \sum^b_ag(x)\delta(x)=\displaystyle \sum_{k=a}^{b-1}g(x) = \sum_{a \leqslant k &lt; b} g(k), \ \ \ \ \footnotesize 整数b\geqslant a. abg(x)δ(x)=k=ab1g(x)=ak<bg(k),    ba.(2.48)
并且还有类似于 ∫ a b + ∫ b c = ∫ a c \int^b_a+\int^c_b=\int^c_a ab+bc=ac 的运算:
(2.49) ∑ a b g ( x ) δ ( x ) + ∑ c c g ( x ) δ ( x ) = ∑ a c g ( x ) δ ( x ) \textstyle \sum^b_ag(x)\delta(x) + \textstyle \sum^c_cg(x)\delta(x) = \textstyle \sum^c_ag(x)\delta(x) \tag{2.49} abg(x)δ(x)+ccg(x)δ(x)=acg(x)δ(x)(2.49)

根据(2.45),(2.47)和(2.48), 可以得出:
(2.50) ∑ 0 ⩽ k &lt; n k m ‾ = k m + 1 ‾ m + 1 ∣ 0 m = n m + 1 ‾ ( m + 1 ) \tag{2.50} \sum_{0 \leqslant k &lt; n} k^{\underline m} = \left.{k^{\underline{m+1}}} \over {m+1} \right | ^m _0 = \frac {n^{\underline{m+1}}} {(m+1)} 0k<nkm=m+1km+10m=(m+1)nm+1(2.50)
它也暗示了也暗示了对于范围 0 ⩽ k &lt; n 0\leqslant k &lt;n 0k<n求和要比对范围 0 ⩽ k ⩽ n 0\leqslant k \leqslant n 0kn更简单.

下降幂不仅可以是正数,还可以是负数. 负数的下降幂定义为
(2.51) x − m ‾ = 1 ( x + 1 ) ( x + 2 ) . . . ( x + m ) , m &gt; 0 \tag{2.51} x^{\underline {-m}} = {1 \over (x+1)(x+2)...(x+m)},m&gt;0 xm=(x+1)(x+2)...(x+m)1,m>0(2.51)
类似于指数 x m + n = x m x n x^{m+n} = x^mx^n xm+n=xmxn, 下降幂的运算法则是:
(2.52) x m + n ‾ = x m ‾ ( x − m ) n ‾ \tag{2.52} x^{\underline {m+n}} = x^{\underline {m}}(x-m)^{\underline n} xm+n=xm(xm)n(2.52)

下降幂和式的完整描述
(2.53) ∑ a b x m ‾ δ x = { x m + 1 ‾ m + 1 ∣ a b , m ̸ = 1 , H x ∣ a b , m = − 1. \tag{2.53} \sum^b_ax^{\underline m}\delta x = \left \{ \begin{array}{cc} \begin{aligned} &amp;\left. {x^{\underline {m+1}} \over m+1} \right|^b_a, &amp;m \not =1,\\ &amp;\left. H_x \right|^b_a, &amp;m = -1. \end{aligned} \end{array} \right. abxmδx=m+1xm+1ab,Hxab,m̸=1,m=1.(2.53)
对应于导数中的乘积法则:${d(uv) \over dx}= u{dv \over dx}+v{du \over dx} $:
(2.55) Δ ( u v ) = u Δ v + E v Δ u 其 中 E f ( x ) = f ( x + 1 ) \tag{2.55} \Delta(uv) = u \Delta v + Ev\Delta u\\ 其中Ef(x) = f(x+1) Δ(uv)=uΔv+EvΔuEf(x)=f(x+1)(2.55)

对应于积分的分布求和:
∫ u D v = u v − ∫ v D u \int uDv=uv-\int{vDu} uDv=uvvDu
有和式的分布求和:
(2.56) ∑ u Δ v = u v − ∑ E v Δ u \sum u\Delta v = uv-\sum Ev\Delta u \tag{2.56} uΔv=uvEvΔu(2.56)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值