数据集成平台选型建议

一 数据集成介绍

数据集成平台是一种用于管理和协调数据流动的软件工具或服务。它的主要目标是将来自多个不同数据源的数据整合到一个统一的、易于访问和分析的数据存储库中。这些数据源可以包括数据库、云应用、传感器、日志文件、社交媒体等等。数据集成平台的关键任务是确保数据的一致性、完整性和可靠性,以便业务用户可以信任和使用这些数据来做出决策。
按照数据的生命周期,我们通常将大数据技术分为数据集成、数据存储、批/流处理、数据查询与分析、数据调度与编排、数据开发、BI 7 个部分。

可以看到数据集成在数据生命周期的最前面位置,它负责将多个来自不同数据源的数据聚合存放在一个数据存储中(如数据仓库/数据湖),组合为用户提供单一统一视图,可以兼顾数据的增长量及所有不同的格式,合并所有类型的数据方便了后续的数据分析和挖掘工作。

二 datax简介

datax 是阿里巴巴开源的一个异构数据源离线同步工具,致力于实现包括关系型数据库(MySQL、Oracle等)、HDFS、Hive、ODPS、HBase、FTP等各种异构数据源之间稳定高效的数据同步功能。

它将传统的点对点结构数据同步方式向星型结构模式转变。
datax演进过程:datax–> datax-web --> dataworks(datax商业版)

三 数据集成工具介绍

下面将介绍下国内使用的主流数据集成工具。

3.1 开源数据集成工具

3.1.1 datax

官网:https://github.com/alibaba/DataX
DataX 是一个异构数据源离线同步工具,致力于实现包括关系型数据库(MySQL、Oracle等)、HDFS、Hive、ODPS、HBase、FTP等各种异构数据源之间稳定高效的数据同步功能。

3.1.2 datax-web

官网:https://github.com/WeiYe-Jing/datax-web
DataX Web是在DataX之上开发的分布式数据同步工具,提供简单易用的 操作界面,降低用户使用DataX的学习成本,缩短任务配置时间,避免配置过程中出错。用户可通过页面选择数据源即可创建数据同步任务,支持RDBMS、Hive、HBase、ClickHouse、MongoDB等数据源,RDBMS数据源可批量创建数据同步任务,支持实时查看数据同步进度及日志并提供终止同步功能,集成并二次开发xxl-job可根据时间、自增主键增量同步数据。

3.1.3 kettle

官网:https://github.com/pentaho/pentaho-kettle
Kettle 是一款国外开源的 ETL(Extract, Transform, Load,即数据抽取、转换、加载)工具,它使用纯Java编写,并可以在Windows、Linux、Unix等多个操作系统上运行。

3.1.4 Sqoop

官网:https://sqoop.apache.org/
Sqoop(发音:skup)是一款开源的工具,主要用于在Hadoop(Hive)与传统的数据库(mysql、postgresql…)间进行数据的传递,可以将一个关系型数据库(例如 : MySQL ,Oracle ,Postgres等)中的数据导进到Hadoop的HDFS中,也可以将HDFS的数据导进到关系型数据库中。

3.1.5 Apache NiFi

Apache NiFi 是一个易于使用、功能强大而且可靠的数据拉取、数据处理和分发系统。基于Web图形界面,通过拖拽、连接、配置完成基于流程的编程,实现数据采集等功能。NiFi是美国国家安全局NAS开发并使用了8年的可视化数据集成产品,2014年贡献给了Apache社区,2015年成为Apache顶级项目。 是为数据流设计。它支持高度可配置的指示图的数据路由、转换和系统中介逻辑,支持从多种数据源动态拉取数据。

3.1.6 Apache SeaTunnel

官网:https://seatunnel.incubator.apache.org/
Apache Seatunnel 是一个分布式、高性能、易扩展、用于海量数据(离线&实时)同步和转化的数据集成平台。

3.1.7 Flink CDC

Flink CDC(Change Data Capture)是Flink提供的一个功能,用于捕获和处理数据源中的变化,特别是数据库中的数据变动。它通过在数据源上设置机制,能够实时地捕获并传递变化的数据,实现实时数据管道和处理分析。

3.2 商用数据集成工具

四 数据同步方式

按照使用场景划分,目前数据同步主要有离线同步实时同步全增量同步三种方式。

4.1 离线同步

在固定时间段或者按照预定计划进行的数据同步,它不强调数据的实时性,而是批量处理历史数据或者定时抓取数据的变化。比如在每天特定时间点或每个小时执行一次同步任务,将数据从源系统抽取、处理后加载到目标系统。这种同步模式适用于数据量较大且对实时性要求不高的场合,例如每日业务报表的生成、夜间批量数据迁移或备份等。

4.2 实时同步

数据在源头发生变化时立即触发同步动作,以极低的延迟甚至接近实时的方式将数据更新反映到目标系统中。这通常涉及到复杂的事件驱动机制、消息队列、流处理技术等,以便捕获和传递数据变更事件,实现实时数据流动。实时同步的应用场景包括实时交易系统、监控系统、物联网(IoT)数据收集、金融风控、在线广告推荐系统等,这些都需要数据的实时一致性来支持高效决策和业务运作。

4.3 全增量同步

一种结合了离线同步与实时同步优点的数据同步策略,旨在既能快速完成初次完整数据同步,又能高效地保持后续数据的实时更新。具体定义如下:首先执行一次全量批量同步操作,然后设置一种机制来跟踪源数据库的变更,持续进行实时同步。这样既保证了在同步开始阶段目标数据库能获取完整的数据视图,又能在后续的时间里通过实时同步及时、高效地更新目标数据库中的数据,从而减少了数据传输量,提高了同步效率,并且维持了数据的一致性。

五 数据集成工具选型对比

数据同步SeaTunnulETLCloudFineDataLinkDataWorksFlink CDCDataXKettleOGGCannelSqoop
CDC机制日志/查询日志/查询日志/查询日志/查询日志查询查询日志日志查询
增量同步×××
断点续传×××
全量同步×
全量+增量××××
架构分布式分布式分布式分布式分布式单机单机分布式单机单机
Transformation※※※※※※※※※※※※※※※※※※※※※※※※※※※※※
生态※※※※※※※※※※※※※※※※※※※※※※※※※※※※
开源×××
学习难度

六 总结

如果想使用开源数据集成平台,自我推荐使用 Apache Seatunnel 或者 Flink CDC(3.0后变化很大) 作为企业数据集成平台。


欢迎关注微信公众号:大数据AI

  前段时间学习了一下Prism,感觉应该找个机会实践一下,而且前段时间,贱内(希望我老婆看不到这篇文章:))让我帮她做个定时提醒的小工具,做好之后感觉以前做了好多自己能用的小工具,如果能够整合到一起,该多好,所以,想起来做个个人工具集成平台,用来继承一系列我自己的以前做过的小软件。 知识背景   主要的知识背景是基于WPF的框架Prism,这个框架是微软的CodePlex中的一个Team开发的平台,现如今貌似已经发布4.0了。唉,说到这里,我以前的公司就是用的这个框架做的应用程序,现在的公司虽然比以前的公司待遇好了,不过用不着做WPF了,也基本上不使用任何框架开发,郁闷啊,呵呵,发发牢骚。在我的“个人平台”里面,没有使用整个框架,只是将框架减配加到我的基础类库里面。使用的东西包括,“Bootstrapper”,“ServiceLocator”,还有“Modularity”,而且我只是借用了他们的思想,然后进行了轻量级的实现。特别是其中的“Modularity”部分,我使用了微软推出的MEF架构进行了简单的实现,经过单元测试,效果不错。   大家如果有兴趣研究Prism的知识,可以访问下面的链接:   http://compositewpf.codeplex.com/   应用程序的外壳使用WPF的应用程序,并且采用了MVVM模式,个人感觉这种方式更有利于子系统的集成。希望大家要是进行WPF的开发一定要关注这种模式,能够带来很多好处,比如:解耦、利于单元测试、界面利于更换等等。 名词解释   模块:  实现应用程序(个人集成平台)功能的各个部分;   子系统: 能够集成到应用程序(个人集成平台)中的各个功能插件; 系统结构 图1 Personal Integration Platform系统结构图   (1). Personal.Component   作为基础模块,借助于Prism的思想,轻量级的实现了部分Prism的功能。包括Bootstrapper,ServiceLocator,以及Modularity(使用MEF架构)。   (2). Personal.Presentation   作为基础模块,对WPF的MVVM模式进行了简单的支持。   (3). IntegrationUtilities   对子系统集成的逻辑进行支持,在此模块中定义了集成的规范的数据结构,以及用于子系统集成的服务(服务的概念借助于Prism中的ServiceLocator)。   (4). PersonalIntegrationPlatform   个人集成平台,这个也就是这个应用程序最核心的部分,整个应用程序的入口,外壳程序。   (5). NotifyIconWpf   一个第三方的开源WPF控件,用过Winform的同志们都知道,NotifyIcon是个系统托盘。因为我希望的是,我的软件运行后直接运行在托盘中,而不是在桌面上占据个Form跑着,我觉得大家平时用软件,肯定没有那么多时间老是盯着一个Form在那里操作,因此,我觉得采用系统托盘的方式比较好,需要的时候打开,不需要的时候,就在系统托盘里面呆着。   (6). Sub-System   子系统,可以有任何有.net知识的人员开发并且集成平台中,只要符合集成平台集成规范就可以。现在已经默认集成了ShutDown子系统,后续还会集成我原来做过的一些比较有用的小程序。呵呵,大家有兴趣,也可以按照继承规范,向里面集成一些自己喜欢的子系统。 使用技术思想   谈到技术思想,主要的思想其实就是面向对象,因为那几个所谓的SOLID思想都是由面向对象的思想衍生出来的。希望大家读到我的这篇文章,不能够奢望大家有收获,但是,希望大家能够不把注意力过于集中到使用的技术,或者编程的技巧,而是集中到系统的结构以及技术思想的运用上。也就是说,不在乎怎么实现,而是在乎怎么组织。嘿嘿,这样就是我为啥给大家看这个系统的结构图,而不是代码的原因,在后面会附上这个项目的源代码,如果对大家有用的话,大家可以拿去看看。 集成方法   (1). MEF框架   MEF框架应该是微软在.net 4.0中推出的一种框架,我理解,主要就是运用IOC的思想进行解耦。最大的好处就是可扩展,这个思想其实早就有,想设计模式中的观察者模式,IOC/DI的思想,以及好莱坞原则,其实都是运用的这种松耦合,可扩展的模式设计的。所谓的松耦合,不是没有耦合,而是耦合到基础的框架,什么叫基础框架,就是谁都能耦合的框架,比如: 如果你写的是.net的应用程序,那你肯定要与.net进行耦合,所以解耦的概念是相对的,耦合才是绝对的。   这里只是想为大家引入这个概念与这种思想,这里并不对MEF进行
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大数据AI

你的鼓励将是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值