从零开始深度学习 T2. Gradient Descent

上一篇文章中介绍了回归分析,其中提到了求解最优参数的梯度下降法(Gradient Descent),这篇文章中,我们将针对Gradient Descent进行展开说明。
如图,Gradient Descent是沿着Loss function的等高线的法线方向更新参数的

Gradient descent

Gradient Descent的原理十分简单,但是在实际操作过程中可能会遇到一些问题,对此有一些针对性的tips。关于梯度下降优化更详细的内容,请参照这篇 译文

Tip 1: Tuning your learning rates

回顾Gradient Descent的参数更新过程:

θθηL

η 代表参数更新的速度,当参数更新过快时,很可能跳过极值点,为此可以在参数更新的过程中不断调整参数的更新速度,在参数接近极值点的时候,使参数更新的慢一点。
步长调整方式有以下几种:

Vanilla Gradient descent

gt=L(θt)w

ηt=ηt+1

wt+1wtηtgt

从Vanilla Gradient descent的公式中,我们可以看出,随着参数的更新,步长 ηt 越来越小,这比较符合直觉,因为随着参数的更新,参数很可能越来越接近极值点,此时我们需要更加小心的更新参数。

Adagrad

Adagrad可以表示为如下公式:

gt=L(θt)w

wt+1wtηti=0(gi)2gt

Adagrad与Vanilla Gradient descent的不同点在于,Adagrad多考虑了一种情况:当某时刻某方向的梯度 gt 非常大时, ηtgt 也会非常大,此时参数更新仍然会“迈出一个大步子”,这也可能使我们错过极值点。Adagrad公式中的 ti=0(gi)2 避免了这种情况。

Tip 2: Stochastic Gradient Descent

之前提到的Gradient Descent在每一次参数更新时,都要计算全体数据集在新的参数下的Loss,当数据集很大的时候,这会造成巨大的计算开销。Stochastic Gradient Descent是解决该问题的一种技术手段,在Stochastic Gradient Descent的每一次迭代中,会随机采样 (x,y) ,并只针对 (x,y) 计算Loss以及梯度。这可以大大加快training的速度(不过在training的过程中,也会引入一些噪音)。

Tip 3: Feature Scaling

不同的feature可能有不同的大小范围,如果没有对feature进行任何预处理,某些波动范围很大的feature在参数更新过程中就可能占据主导作用,从而使参数更新过程走很多弯路。如下图所示,当feature x1 的范围远远小于 feature x2 时, w2 y 的影响就远远大于w1,这就造成了梯度线呈椭圆形,此时法线方向并不指向椭圆中心,于是进行参数更新的时候,就不是朝着最低点更新了。

feature scaling处理起来非常简便,只需对输入参数进行如下处理即可:

xrixrimiσi

其中 mi 为training集中feature xi 的平均数, σi 为training集中feature xi 的方差。

Warning Limitation of Gradient Descent

Gradient Descent进行参数更新的依据是每个参数的偏微分,因此当参数的偏微分很小的时候,参数更新会很慢,甚至停止。下图中出现的情况需要引起我们的注意:

至于怎么解决这些问题呢?我们会在以后的博客中进行介绍。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值