之前的量化系列文章,虽然搭了个东西,但太过散乱,想到什么做什么,到最后也不知道自己要做什么,怎么才能在股市里扒拉点碎银子当零花钱。
最近开始系统性地开始学习量化交易,重新开一个系列,做为自己的学习笔记。
首先了解到了PageRank算法。
这个算法是数据挖掘算法之一,由Google创始人Larry Page在斯坦福上学的时候提出来的。该算法用于对网页进行排名,排名高的网页表示该网页被访问的概率高。
这个算法的核心思想有两点:
a. 如果多个网页指向某个网页A,则网页A的排名较高。
b. 如果排名高A的网页指向某个网页B,则网页B的排名也较高,即网页B的排名受指向其的网页的排名的影响。
对于这个算法,要求了解其核心思想。
不过看看这个算法的具体实现,可以有助于提升对其核心思想的理解。
找了两篇关于这个算法的文章:
《PageRank算法原理●Python实现》 https://blog.csdn.net/weixin_42057852/article/details/81502727
《数据挖掘十大算法(六):PageRank算法原理与Python实现》 https://blog.csdn.net/ten_sory/article/details/80927738
这个算法后面能在量化交易里做什么,我暂时还不清楚。
理解了这个算法之后,我猜测(猜测本身不是一种科学的行为)它有可能会在后面用于一些网页的重要性分析、或者股票的关注度分析。
联系到自身当前工作,公司在设计app时,其实也可以做PageRank分析,看看这些页面的重要性顺序是不是符合产品原先的设想。