特斯拉HW4.0与HW3.0

1. 外观造型上的差异

相比于HW3.0

1)HW4.0 的面积更大一些,但厚度更薄一些

2)HW3.0 采用3个固定点,HW4.0采用4个固定点

 

2. 智驾域控模块硬件上的差异

2.1 外设接口

(HW3.0 - 智驾模块PCB板 图片来源- 中信证券报告)

(HW4.0 - 智驾模块PCB板 资料来源- 博主Greentheonly披露的相关信息)

1)摄像头接口的变化

HW3.0 的智驾域控模块PCB板子上有9个摄像头接口:

  • 前风挡 - 前视三目摄像头(3)
  • 车内后视镜上方 - 舱内监控摄像头(1)
  • 前翼子板 - 左右各1个侧后视摄像头(2)
  • B柱 - 左右各1个侧前视摄像头(2)
  • 后尾门牌照上方- 1个后视摄像头(1)

 

HW4.0 的智能驾驶模块PCB板子上有12个摄像头接口:

HW4.0 相比 HW3.0 :预留1个摄像头接口,舱内监控需要1个摄像头接口,前风挡位置的前视摄像头接口的需求由3个变为2个。那么除此之外,车外其它位置还需要布置8颗摄像头。

HW3.0与HW4.0 前置摄像头布置

这11颗摄像头具体怎么布置,目前尚未有明确的答案。据业内相关人士猜测:

  • 前风挡 - 前视双目摄像头(2)
  • 车内后视镜上方 - 1个舱内摄像头(1)
  • 前翼子板 - 左右各1个侧后视摄像头(2)
  • 前保险杠 - 左右各1个侧前视+ 1前视(3)
  • 后保险杠 - 左右各1个侧后视+ 1后视(3)

HW4.0系统11个摄像头布置示意图

备注:据相关资料显示,HW4.0 :前风挡上的前置摄像头的分辨率将由120万像素提升至500万像素。HW3.0:前置摄像头配备的图像传感器为安森美的AR0136AT,HW4.0:前置摄像头配置的图像传感器为索尼的IMX490。对于HW4.0 系统,如果其它摄像头也采用500万像素的配置,那么对算力的需求会比较大,同时成本也会比较高。那么,其它摄像头会不会也采用500万像素的配置,目前尚未可知。

2)GPS模块接口变化

HW4.0 :3频GPS模块接口,新增L5频率,有利于GPS测量过程中的周跳探测、电离层延迟误差改正和整周模糊度的确定,将民用定位精度从5米提升至30厘米。

备注:HW3.0中的GPS模块为 NEO-M8L-01A-81(应该是双频GPS模块)

HW4.0 中的GPS模块接口

 

3)毫米波雷达接口变化

HW3.0 —— 毫米波雷达采用CAN总线接口

HW4.0 —— 采用定制的高分辨率毫米波雷达,代号Phoenix(很可能是4D毫米波雷达),采用100 Mbps的以太网接口

备注:还配置了雷达加热器,应该是用以防止冰雪天气中对雷达信号的影响

4)智驾模块与座舱模块之间的通讯接口

HW3.0 —— 1个以太网接口

HW4.0 —— 2个以太网接口

 HW4.0 中的智驾模块与座舱模块之间的通讯接口

2.2 FSD芯片架构的变化


 

HW3.0 中的FSD芯片架构

1)HW3.0 内的 FSD芯片(14nm制程,三星代工)的架构:

  • 12个Cortex-A72 CPU核 ,分成3个集群,每个集群包含4个CPU核心,CPU的最大频率为2.2GHz
  • 2个NPU,工作频率为2GHz

2)HW4.0 内的FSD芯片(7nm制程,三星代工)的架构:

  • 20个CPU核(CPU架构未知 ) ,分成5个集群,每个集群包含4个CPU核心,CPU的最大频率为2.35GHz,闲时频率1.37GHz
  • 3个NPU,工作频率为2.2GHz
     

3. 座舱域控模块硬件上的差异

HW3.0的座舱域控模块是APU+GPU两块板子,HW4.0的座舱域控模块的GPU和APU被集成在了一块板子上,集成度更高一些。(所以,HW4.0 盒子整体的厚度看着更薄一些)。

但是板子上主要的配置并没有什么变化:

  • 处理器:AMD的APU+GPU
  • 存储器:16G RAM,256G NVME存储HW3.0- 座舱域模块APU正面

 

HW3.0- 座舱域模块APU反面

APU与GPU板子之间通过ePCI连接

HW4.0 - 座舱域控模块主板正面


HW4.0 - 座舱域控模块主板反面

<think>嗯,用户想深入探讨新能源电车智能驾驶哪家强,包括特斯拉、小鹏、华为、蔚来、理想、比亚迪、小米这些品牌,还要分析他们强的原因。首先,我需要确定用户的需求是什么。可能他们是在考虑购买电动车,或者对行业动态感兴趣,或者做市场分析。不管怎样,用户希望得到一个结构清晰、有深度的比较,而不仅仅是表面的信息。 接下来,我得收集这些品牌在智能驾驶方面的最新信息。特斯拉的FSD肯定是一个重点,他们一直处于领先地位,但最近其他品牌也在追赶。小鹏的XNGP和华为的ADS 2.0都是值得注意的技术,尤其是华为的无图方案。蔚来的NAD可能依赖高精地图,而理想可能更注重家庭场景的智能驾驶。比亚迪虽然销量高,但在智驾方面可能相对保守,而小米作为新入局者,可能有潜力但还需要观察。 需要确保提到的每个品牌都有覆盖,并且突出他们的技术特点、优势和不足。比如特斯拉的算法和数据积累,小鹏的本土化适配,华为的硬件和算法整合能力。同时,可能还需要比较各家的传感器方案,比如是否依赖激光雷达,视觉方案的不同,以及是否使用高精地图。 另外,用户可能想知道为什么这些公司强,所以需要分析他们的核心技术,比如自研芯片、算法优化、数据量、测试里程等。比如特斯拉的Dojo超算和影子模式,华为的MDC计算平台,小鹏的XNet感知架构。 还要注意行业趋势,比如从有图到无图的发展,城市NOA的普及情况,以及各家公司的落地时间表。比如华为年底实现全国无图,小鹏明年完成大部分城市覆盖,这些时间节点对用户来说可能有参考价值。 最后,总结部分需要给出一个综合对比,可能分几个维度,比如技术领先性、本土化能力、硬件配置、数据积累等,帮助用户理解各家的优势和适合的场景。比如特斯拉适合追求前沿技术的用户,而华为和小鹏可能更适合中国路况。 需要确保回答结构清晰,分点明确,每个品牌单独分析,然后有对比总结。同时,按照用户的要求,使用中文,数学公式正确,行内用$...$,独立公式用$$...$$,虽然这个问题可能涉及较少的数学公式,但如果有提到算法或数据量时可能需要使用,比如特斯拉的数据量可以用$1.3亿英里$表示。 检查是否有遗漏的品牌,比如小米作为新进入者,可能信息较少,但需要提到他们的进展和潜力。同时,注意各品牌的最新动态,比如华为和长安的合作,比亚迪的销量但智驾进展较慢,这些都需要准确无误。 最后,确保语言流畅,专业术语解释清楚,让不同层次的读者都能理解。可能用户对智能驾驶的技术细节不太熟悉,所以需要用易懂的语言解释,比如解释无图方案的优势,激光雷达的作用等。</think>### 新能源电车智能驾驶技术深度对比分析 --- #### 一、技术路线核心能力 **1. 特斯拉(Tesla)** **核心优势**:纯视觉方案 + 超强算法迭代能力 - **FSD(Full Self-Driving)**:基于$8 \times 摄像头$的视觉感知系统,依赖**BEV(鸟瞰图)网络**和**Occupancy Network(占据网络)**实现环境建模。 - **数据壁垒**:全球超过**1.3亿英里**的自动驾驶里程数据,通过**影子模式**持续优化算法。 - **芯片自研**:搭载**HW4.0**计算平台(算力$72 \text{TOPS}$),支持端到端神经网络。 *弱点*:中国复杂路况适配性不足,依赖高精地图的竞品在城区表现更优。 **2. 小鹏(XPeng)** **核心优势**:全域场景覆盖 + 本土化适配 - **XNGP系统**:2023年实现「无图」方案,支持城市/高速/停车场全场景,依赖$2 \times 激光雷达+12 \times 摄像头$融合感知。 - **算法架构**:XNet 2.0感知架构,实时生成动态BEV地图,时延低于$100\text{ms}$。 - **落地进度**:2024年计划覆盖全国90%以上城市道路。 *竞争力*:本土复杂路口处理能力优于特斯拉。 **3. 华为(HUAWEI)** **核心优势**:全栈自研 + 硬件协同 - **ADS 2.0**:融合$3 \times 激光雷达+毫米波雷达+视觉$,支持**GOD(通用障碍物检测)网络**,识别率提升至$99.9\%$。 - **鸿蒙生态**:车机手机/家居无缝互联,支持跨设备算力共享(如调用手机NPU)。 - **无图方案**:2023年底实现全国高速/城区NOA(导航辅助驾驶)。 *突破点*:长安、赛力斯深度合作,智驾系统装机量快速攀升。 --- #### 二、差异化竞争策略 **4. 蔚来(NIO)** - **NAD(NIO Autonomous Driving)**:依赖高精地图,专注**换电站场景自动泊车**,但城区NOA推进较慢。 - **硬件堆料**:搭载$4 \times 英伟达Orin芯片$(算力$1016\text{TOPS}$),但算法效率待优化。 **5. 理想(Li Auto)** - **家庭场景优先**:AD Max 3.0优化**高速NOA**和**自动变道**,城区重点开发**幼儿园/学校区域避让算法**。 - **保守策略**:暂未全面推广无图方案,依赖高精地图+激光雷达冗余。 **6. 比亚迪(BYD)** - **销量驱动**:2023年新能源车销量超300万辆,但智驾技术**以供应商合作为主**(如Momenta合作)。 - **短板**:自研算法起步晚,DiPilot系统仍以L2+为主。 **7. 小米(Xiaomi)** - **后发潜力**:首款车型SU7搭载**小米Pilot**,采用$2 \times 激光雷达+Orin-X芯片$,算法复用小米机器人实验室技术。 - **生态协同**:计划打通手机-车机-智能家居的智驾场景联动。 --- #### 三、关键指标对比 | 厂商 | 传感器方案 | 计算平台 | 数据规模(2023) | 城市NOA落地进度 | |----------|----------------------|----------------------|------------------|------------------| | 特斯拉 | 8摄像头(纯视觉) | HW4.0(72TOPS) | 1.3亿英里 | 北美为主 | | 小鹏 | 2激光雷达+12摄像头 | 双Orin-X(508TOPS) | 3000万公里 | 50城(2023) | | 华为 | 3激光雷达+多模融合 | MDC 810400+TOPS) | 2000万公里 | 全国无图(2023)| | 理想 | 1激光雷达+视觉 | 双Orin-X | 1500万公里 | 10城(测试中) | --- #### 四、行业趋势总结 1. **技术路线收敛**:2024年主流厂商将全面转向「无图+激光雷达融合」方案,硬件成本下降至$5000元内$。 2. **场景深挖**:从高速NOA转向**城区拥堵跟车**/**窄路通行**/**跨层停车场**等高难度场景。 3. **竞争焦点**: - **算法效率**:BEV+Transformer架构的实时性优化(如特斯拉的$C++$底层重构)。 - **数据闭环**:仿真测试占比超$70\%$(小鹏已建**亚洲最大自动驾驶仿真中心**)。 **选购建议**: - 追求技术前沿选**特斯拉/小鹏**,注重本土体验选**华为/理想**,保守用户可选**比亚迪**,科技生态玩家关注**小米**后续迭代。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值