Tesla FSD是什么?

特斯拉的FSD(Full Self-Driving)是其自动驾驶产品的最高级别,目前仍处于Beta测试阶段。FSD旨在实现全无人驾驶,但需驾驶员监控。特斯拉的Autopilot分为基础版、增强版和FSD三个等级,FSD目前仅在北美地区可用,未来可能通过软件更新升级至L3/L4级。FSD功能依赖于特斯拉的硬件平台,如HW3.0和未来的HW4.0,以及基于BEV的软件算法和Dojo超算系统。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Tesla FSD是什么?

参考链接:https://wallstreetcn.com/articles/3691555

FSD是特斯拉的自动驾驶(Autopilot)产品中的最高档

FSD全称是Full Self-Driving(完全自动驾驶),是特斯拉推出旨在实现全无人驾驶的智驾产品,当前仍处于Beta版本(测试版)。特斯拉官网表示,当前Autopilot产品(包括FSD)仍需驾驶员实时监控车辆状态;未来若要实现无需驾驶员监管,则需通过大量测试证明系统可以远比驾驶员更加可靠,且具备法规许可。当前,FSD功能正在北美进行公开测试,通过FSD订阅者的真实驾驶数据反哺FSD软件算法能力,因此特斯拉以FSD Beta对功能命名。我们认为,目前FSD Beta仍属于SAE或是国标智驾等级划分中的L2级(组合辅助驾驶),是否可以升级至L3/L4级还需观察。

特斯拉Autopilot分三个档次,分别对应不同的功能和售价。特斯拉的三个等级智驾产品,由低到高分别为基础版(Basic),增强版(Enhanced,EAP)和FSD。其中基础版和增强版在国内销售的车型已经落地,FSD尚未引入国内,但可以在购车时进行付费选装,待FSD引入中国时才可以上车。FSD目前只在北美地区(美国和加拿大)推出。

图表1:特斯拉中国、美国Autopilot功能分级及对应售价

资料来源:公司官网,中金公司研究部

FSD价格持续上升,为降低门槛推出每月订阅模式。FSD在2019年前是EAP的增值功能,从19年4月起,FSD开始作为单独的功能进行销售,并从此经历过数次涨价,公司给出的涨价理由是特斯拉在AI上面实现的突破可以带来涨价匹配的价值。当前美国的FSD一次性售价为15,000美元(加拿大为19,500加币)。或许是一次性购买门槛较高,特斯拉在美国推出(加拿大尚未推出)FSD按月订阅模式,价格为99(已购买EAP)或199美元/月。中国尚未推出订阅模式,想体验增强版EAP的用户需一次性支付较为昂贵的选装费用32,000元。

图表2:特斯拉FSD美国售价变化一览

资料来源:not a tesla app, 公司公告,中金公司研究部

FSD功能从硬件HW3.0版本开始支持,HW4.0发布在即

算力平台从外采到自研,从独立控制器到集中式域控。特斯拉Autopilot硬件版本从2014年采用的Mobileye单芯片单摄像头HW1.0开始,平均两年左右会进行一次迭代。从HW2.0起,特斯拉开始采用自研智驾域控制器,由多颗英伟达芯片构成的算力平台,8颗1.2MP的摄像头接入到域控当中,并与毫末波雷达信息进行融合。当前大规模部署的HW3.0,特斯拉对域控算力进行了大升级,从英伟达的算力平台改为自研的FSD芯片和NPU,GPU算力提升了12倍,每秒可以处理的视频帧数也提升了将近21倍,这在其推出的19年是业界公认的性能第一梯队。

图表3:HW1.0采用的单芯片单摄像头方案

资料来源:有驾、中金公司研究部

图表4:HW2.0/3.0传感器配置

注:毫米波和超声波雷达在HW3.0中不再使用
资料来源:Yole,中金汽车研究部

HW3.0又称FSD Computer,特斯拉在HW3.0平台上提供FSD Beta功能。HW3.0可以满足Autopilot纯视觉方案所需的大量图像处理需求,较高的视频流处理帧数也为实时构建BEV(鸟瞰图)打下基础。针对购买了FSD,但是车辆仍采用HW2.0和HW2.5的老车主,特斯拉提供付费升级服务,升级费用为1000美元。

图表5:HW3.0采用域控方案和自研芯片

资料来源:特斯拉AI Day,中金公司研究部

更高规格的HW4.0公布在即,媒体报道已在加州工厂新生产的Model Y 上车。根据媒体报道,HW4.0或在传感器和域控制器上都有较大程度的升级:摄像头数量预计从原先的8颗提升到11颗;新增了4D毫米波雷达(代号Phoenix);算力芯片也升级到了第二代FSD芯片,预计两颗算力可达500Tops左右;内存也预计有较大的升级,从8颗LPDDR4升级到16颗GDDR6内存,在容量提升的同时,传输速率大幅提升,进一步释放数据传输带到来的性能瓶颈。

马斯克曾在4Q22业绩会上表示,HW3.0将不能升级至HW4.0,理由一是在FSD体验上两者不会有很大区别,HW4.0则会在系统可靠性有更大提升;另一个理由是,全面替换将带来较大的成本增加,无法实现商业闭环。我们认为,HW4.0若在传感器布置上有所变动,将很难兼容HW3.0传感器配置;同时功能性而言,HW4.0拥有更好的硬件,必然会比当前已经充分释放潜能的HW3.0,有更多或更强的功能,那么HW3.0系统会持续维护多久,同时如何对已经全额购买FSD的消费者进行升级,我们建议持续关注。

图表6:特斯拉Autopilot硬件HW1.0-HW4.0(预计)配置一览

注:HW4.0尚未官方发布,表中数据为根据汽车之心报道所预估的值
资料来源:汽车之心,公司官网,中金公司研究部

FSD的实现依托基于BEV的软件算法和基于Dojo的高效数据处理

BEV感知和高效数据闭环为FSD最核心技术。特斯拉在2021年和2022年的AI Day展示了其FSD落地的两大技术底座,一个是BEV+Transformer的感知算法架构,另一个是Dojo超算系统。前者为FSD提供了不依赖高精地图的感知和定位能力,后者则是支持算法快速迭代响应用户反馈,实现高效数据闭环。

► BEV+Transformer:公司率先业界,在2021年的Tech Day提出使用BEV(Bird Eye’s View,鸟瞰图)进行特征级融合,将车四周摄像头所拍摄到的画面,通过Transformer提取共同特征进行三维构建。在不依赖高精地图的情况下,实现对车辆周边实时构图,并基本准确地判断车辆周围物体的位置和轮廓,以及车道线、路墩、信号灯等交通设施。

图表7:特斯拉FSD感知-规划-控制软件架构

资料来源:特斯拉AI Day,中金公司研究部

Transformer是利用注意力机制来判断上下文或是不同图片之间关联程度的算子模型。采用Transformer的算法架构,所谓的“大模型”,通常有大量的参数需要训练。好在Transformer适合平行计算,可以在GPU上高效训练和推理。但同时缺点是,由于参数较多,其优异的表现需要大规模数据集进行训练,小数据集上表现不如传统的卷积神经网络。因此,为了可以充分发挥BEV+Transformer感知算法和积攒的大量行车数据,特斯拉研发了超算系统Dojo。

图表8:特斯拉BEV+Transformer感知架构解读

资料来源:特斯拉 AI Day,中金公司研究部

► Dojo:公司于2021年AI Day推出Dojo超算系统,Dojo系统是一个创新的非冯诺依曼设计(支持并行运算),搭配较丰富的网络结构和接口、平衡的资源扩展和功耗,以及对应的存储和调度结构。我们认为,超算中心是支持FSD大数据模型演进的关键,公司通过利用Dojo高稳定性、高拓展性、高并行算力特性,构建更高效的数据标注、算法迭代、模拟验证能力,持续扩大FSD的算法领先优势。

结构上来看,Dojo基于公司自研的AI训练芯片D1构建,D1芯片的设计是为了实现“专芯专用”,其排布方式、带宽容量、节点架构等均围绕实现最佳神经网络训练能力而设计。设计方面,D1芯片采用分布式架构和7nm制造工艺,单片FP32达22.6 TOPS 算力,可实现50万个训练节点无缝连接,组成超大规模计算阵列。

图表9:D1芯片架构

资料来源:特斯拉AI Day,中金公司研究部

图表10:Dojo量产时可达到4.4x A100芯片训练速度

注:训练倍数为运行自动标注算法和神经网络模型Occupancy Network时较A100单芯片的训练速度
资料来源:特斯拉AI Day,中金公司研究部

<think>首先,用户的问题是:“我想了解FSD的含义及其相关内容请问FSD是什么有什么用途”。我需要基于系统级指令和用户可见层的要求来构建回答。系统级指令: 1.所有行内数学表达式必须使用$...$格式。例如,如果有变量或方程,要用$...$。2.独立公式必须使用$$...$$格式并单独成段。3.LaTeX语法正确。 4.使用中文回答。5.生成相关问题。6.回答中引用的段落末尾自然地添加引用标识,例如:[^1]。 用户可见层: -回答结构清晰,帮助用户逐步解决问题。-尽量保证回答真实可靠。-参考站内引用:有引用[1]、[2]、[3],但用户的问题是关于FSD的,所以我需要聚焦在FSD上。用户的问题是关于FSD的含义和用途。FSD可能指的是“FullSelf-Driving”,即完全自动驾驶。从引用[2]和[3]中,可以看到FSD与特斯拉的自动驾驶系统相关:-引用[2]提到:Dojo架构处理特斯拉车辆的行驶数据,帮助FSD自动驾驶系统优化。 -引用[3]提到:FSD V12的核心改进、算法、代码实例和应用前景。所以,FSD在这里很可能指的是特斯拉的FullSelf-Driving系统。 回答结构:-结构清晰:一步步解释。-先解释FSD是什么。-然后解释其用途。-可能简要介绍相关内容,如核心算法或应用。-使用中文。生成相关问题:在回答结束后,添加“§§相关问题§§”部分,列出几个相关问题。 引用:引用[3]直接与FSD相关,所以我应该在回答中自然地引用它。例如,在解释FSDV12时引用[^3]。数学表达式:用户的问题是关于FSD的,可能不涉及数学。但如果提到算法或公式,需要用LaTeX格式。例如,如果有方程,要用$...$或$$...$$。但FSD主要涉及软件和AI,可能不需要数学公式。所以,我可能不需要添加数学表达式,除非必要。 确保LaTeX语法正确:如果使用,要正确。回答内容:- FSD是什么:FullSelf-Driving,特斯拉的自动驾驶系统。 -用途:实现车辆自动驾驶,提高安全性和便利性。-相关内容:基于引用[3],可以提到核心算法、V12版本、应用场景等。 参考引用:-引用[3]:讨论FSDV12的进展、算法、代码实例和应用前景。 -引用[2]:提到Dojo架构支持FSD数据处理。 -引用[1]:关于后端开发,与FSD无关,所以忽略。 在回答中,自然地添加引用标识。例如,在提到FSDV12时,说“根据引用[3]”。完整回答框架: 1.介绍FSD的含义。 2.解释其用途。3.简要描述核心内容(如算法、版本)。 4.添加相关问题。相关问题:基于FSD主题,生成几个问题,如: -FSD的技术原理是什么? -FSD在哪些车型上可用? -FSD的安全性如何?最后,添加引用标识。</think>### FSD 的含义及其相关内容 FSD 是“Full Self-Driving”(完全自动驾驶)的缩写,特指特斯拉(Tesla)开发的自动驾驶系统。该系统旨在通过人工智能和传感器技术,实现车辆在无需人类干预的情况下完成驾驶任务。下面我将逐步解释 FSD 的含义、用途及相关内容,确保回答清晰可靠。 #### 1. **FSD 是什么?** FSD 是特斯拉自动驾驶技术的核心系统,它利用摄像头、雷达、超声波传感器和强大的计算平台(如特斯拉自研的 Dojo 架构)来感知环境、规划路径并控制车辆。FSD 系统通过深度学习模型处理实时数据,例如交通信号、行人、障碍物等,以实现从辅助驾驶到完全自主驾驶的过渡。 - **核心版本**:例如 FSD V12 是当前最新版本,它引入了端到端神经网络架构,减少了传统规则编码的依赖,提升了系统的适应性和可靠性[^3]。 - **技术基础**:FSD 依赖于分布式计算架构(如 Dojo),该架构提供高带宽、低延迟的处理能力,支持全球数百万辆特斯拉车辆的数据训练和优化[^2]。 #### 2. **FSD 有什么用途?** FSD 的主要用途是提升驾驶安全、便利性和效率,具体包括: - **自动驾驶功能**:实现自动变道、停车、导航高速公路和城市街道等功能,减少驾驶员疲劳和人为错误。 - **数据驱动优化**:通过收集和分析车辆行驶数据,FSD 系统不断学习和改进算法,例如在复杂场景(如雨雪天气或拥堵路段)中提升决策准确性[^3]。 - **应用场景**: - **智能驾驶**:为个人车辆提供全自动驾驶服务,提升出行体验。 - **自动物流**:在货运和配送领域,FSD 可优化路线规划和货物运输,降低成本。 - **自动配送**:支持无人配送车在最后一公里配送中的应用,提高效率[^3]。 - **安全增强**:FSD 整合了防碰撞、车道保持等安全机制,旨在减少交通事故率。根据特斯拉数据,启用 FSD 的车辆事故率显著低于人类驾驶。 #### 3. **相关内容:核心算法与实践** FSD 的核心基于深度学习模型,例如使用卷积神经网络(CNN)处理视觉数据,并通过强化学习优化驾驶策略。以下是简要说明: - **算法原理**:FSD V12 采用端到端神经网络,输入传感器数据(如摄像头图像),直接输出控制指令(如转向、加速)。这减少了传统模块化系统的延迟,提升了实时性[^3]。 - **实践示例**:在代码层面,FSD 系统涉及大量数据处理和模型训练。例如,特斯拉使用类似以下伪代码结构(简化版)来处理感知任务: ```python # 示例:感知模块的简化代码(基于 FSD V12 原理) def perception_module(image_data): # 使用 CNN 提取特征 features = cnn_extractor(image_data) # 物体检测和分类 objects = object_detector(features) return objects ``` 实际系统更复杂,包括多传感器融合和实时决策循环[^3]。 - **性能与挑战**:FSD 虽先进,但仍面临挑战,如极端环境适应性、法规合规性和伦理问题。特斯拉通过持续迭代(如 V12 版本)来应对这些挑战[^3]。 FSD 代表了自动驾驶技术的前沿,其发展依赖于强大的计算架构(如 Dojo)和大规模数据训练[^2]。如果您对具体技术细节或应用案例感兴趣,可以提供更多方向。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值