
AI+医疗
文章平均质量分 87
AI+医疗,项目及相关科研
强化学习曾小健
"强化学习曾小健2、强化学习曾小健3、我是机器人曾小健具身"都是该号副号。CSDN全站80强博客、总近480w+浏览。AI生成式技术,计算机博士;llama3、Baichuan2、Qwen、GLM-4等等项目贡献人(ArtificialZeng)。这个博客的主题主要是强化学习技术、AI生成式技术、大模型多模态技术、机器人具身智能控制技术、机器/深度学习论文或科研前沿、GNN图神经网络、神经网络,包括人工神经网络和生物神经网络,及其大脑演化,智能和认知的产生,通用人工智能;
展开
-
近40个中医药AI大模型已亮相,产学研医界“大玩家”云集
1”即华佗中医药大模型创新中心 ,“3”是产业交易平台、产业数据平台、产业大模型服务平台,“N”为线上交易、药材追溯、检验检测、中药材知识普及等,赋能中医药产业升级。(如果您在医疗、医保、医药领域具有独到专长,掌握真正有行业启蒙价值的见解、观点,愿意传播新知、启发新智、共享新思维,那么我们将尤为欢迎您入驻我们的。发现,《华佗中医药大模型建设方案》称,将充分利用华为的算力、算法优势,以及“中国药都”的中医药政策、区域、资源、数据优势,构建。它们也能在不到一盏茶的功夫,把你的脉象“摸”个门儿清。原创 2024-07-08 13:51:44 · 1721 阅读 · 0 评论 -
医疗专家系统Mycin
由于MYCIN是一个早期的专家系统,具体的用户界面和交互方式可能与现代软件有所不同,但它的核心原理和组件在当今的许多知识型系统中仍然适用。由于MYCIN是一个早期的专家系统,具体的用户界面和交互方式可能与现代软件有所不同,但它的核心原理和组件在当今的许多知识型系统中仍然适用。MYCIN程序是一个典型的知识型计算机程序,它专注于传染病,特别是细菌性败血症的治疗选择。MYCIN程序是一个典型的知识型计算机程序,它专注于传染病,特别是细菌性败血症的治疗选择。知识库和医生输入的患者数据。MYCIN的静态知识库。原创 2024-05-18 17:43:51 · 2640 阅读 · 0 评论 -
结合Transformer与GNN!图Transformer15个创新方案,无痛涨点
作者提出了一种新的神经网络编码器类别,称为DIFFORMER(基于扩散的Transformer),包括两个实例:一个具有线性复杂度的简单版本,适用于数量庞大的实例;作者提出了一种新的方法,称为谱注意力网络(SAN),它使用了一种学习位置编码(LPE),可以从拉普拉斯算子的全谱中学习节点的位置。为了解决分子表示学习中的问题,作者提出了一种名为GROVER的新框架。论文提出了一种名为Graphormer的图表示学习方法,它建立在标准的Transformer架构之上,并在广泛的图表示学习任务上取得了出色的结果。原创 2024-04-23 14:51:06 · 1623 阅读 · 0 评论 -
机器学习评价指标:AUCPR/AUC-ROC、混淆矩阵、五折交叉
AUC-ROC的影响:AUC-ROC衡量的是模型在所有可能的阈值下的整体性能。模型性能的评估:在类别不平衡的情况下,AUC-PR比AUC-ROC更能反映模型在实际应用中的性能。使用适合不平衡数据集的算法:某些机器学习算法,如XGBoost、LightGBM等,具有处理不平衡数据集的能力,可以考虑使用这些算法。总之,当AUC-PR较低而AUC-ROC较高时,很可能是由于数据集存在类别不平衡问题。使用适合不平衡数据集的评估指标:除了AUC-PR,还可以使用其他适合不平衡数据集的评估指标,如。原创 2024-04-10 23:46:10 · 1266 阅读 · 0 评论 -
分层注意力变换器(Hierarchical Attention Transformers, HATs)在高效处理长文档分类问题中的应用
这篇论文探讨了分层注意力变换器(Hierarchical Attention Transformers, HATs)在高效处理长文档分类问题中的应用。作者提出了预训练的HAT模型,这些模型首先在段落级别进行编码,然后是跨段落编码,并将其与Longformer模型和部分预训练的HATs进行了比较。原创 2024-04-09 18:48:22 · 335 阅读 · 0 评论 -
Illness severity assessment of older adults in critical illness using machine learning (ELDER-ICU):
总的来说,这项研究利用机器学习和老年患者特异性指标,开发了一个性能优于现有方法的病情严重程度评估模型,并进行了全面的验证和偏差评估。研究强调了将老年相关因素纳入模型的重要性。数据来源:研究使用了来自美国和荷兰171家医院的大规模多中心ICU数据库,包括MIMIC, eICU-CRD和。模型在临床实践中需要前瞻性验证以及持续的性能监测和重新校准。采用XGBoost机器学习算法开发模型,并与其他机器学习算法和临床评分进行比较。结果:在所有类型的验证中,ELDER-ICU模型的。达到与完整模型相似的性能。原创 2024-04-04 22:09:44 · 389 阅读 · 0 评论 -
Nature子刊使用的机器学习可解释方法,教你复现
另外,比如输入参数15,大多数的点弥漫在SHAP = 0,说明它对大部分结果都没啥影响,只对小部分结果有影响。本文通过一个完整的示例说明了如何生成合成数据集、训练深度学习模型以及使用 SHAP 的 DeepExplainer 来解释模型的预测。并提供了如何利用评估指标和绘图对模型性能进行定量评估,也提供了对每个特征对模型预测的影响的定性理解,希望对您有所帮助。这就是我们揭开神秘面纱的旅程,以确保机器学习模型不仅仅是黑匣子,而是一本打开的书,我们可以阅读、理解和信任它们的故事。原创 Coronae。原创 2024-04-04 21:32:43 · 1298 阅读 · 0 评论 -
公共数据+人工智能+强化学习模型,82.9分的《自然》顶级子刊说发就发!代码也公开,接稳咯!
e,f. 读者研究结果:比较了89名皮肤科医生在无人工智能支持(-AI)、使用SL模型支持(+SL)和使用RL模型支持(+RL)的情况下的敏感性(e)和最佳管理决策的频率(f)。4. RL模型在高风险患者监测场景的应用:作者将RL模型应用于高风险患者的监测场景,通过逐个患者的所有病变图像,以最大化每个患者的累积奖励,展示了模型的实际应用。1. 定义RL决策支持模型:首先,作者明确定义了一个基于RL的决策支持模型,并通过与监督学习(SL)模型的比较,突显了RL模型的优越性。原创 2024-04-04 21:22:42 · 977 阅读 · 0 评论 -
[GCT论文详解]Graph Convolutional Transformer学习电子健康记录EHR的图结构+github页面 合集
电子健康记录 (EHR) 的有效建模正迅速成为学术界和工业界的一个重要话题。最近的一项研究表明,使用电子病历数据的图形结构(例如诊断和治疗之间的关系)可提高预测任务(如心力衰竭预测)的性能。然而,EHR 数据并不总是包含完整的结构信息。而且,当涉及到索赔数据时,结构信息一开始就完全不可用。在这种情况下,我们是否还能做得比仅仅将 EHR 数据视为扁平结构的特征包更好?在本文中,我们研究了在对 EHR 数据执行监督预测任务时联合学习 EHR 隐藏结构的可能性。原创 2024-02-26 23:23:38 · 1207 阅读 · 1 评论 -
[整理]医学知识增强的多模态基础模型的相关研究
在此次线上分享中,大家可以跟随她的讲述,了解近期关于医学知识增强的多模态基础模型的相关研究,并展望基础模型能够从医学知识增强的角度出发,通过结合医学的强先验背景知识,提取适配医疗场景的多模态数据表征,降低数据依赖,开发出更适合医学领域的成果。为了让大家更细致地了解医疗领域模型的进展,机器之心线上分享邀请到了上海交通大学未来媒体网络协同创新中心在读博士生、上海人工智能实验室智慧医疗研究中心见习研究员张小嫚,以《医学知识增强的多模态基础模型研究》为主题,为大家分享最新研究成果。原创 2024-04-02 15:00:05 · 497 阅读 · 0 评论 -
MIMIC数据库+2表2图 拿下一区10+sci
本研究采用。原创 2024-03-31 19:40:37 · 363 阅读 · 0 评论 -
论文速读 · 第14期 | 大模型与医学人工智能
比较两个协助研究组,LLM的协助下医生的DDx质量得分较高(前十准确率51.7%),相比未使用LLM的医生(36.1%)(麦克马尔检验:45.7,p < 0.01),以及使用搜索引擎的医生(44.4%)(4.75,p = 0.03)。和睡眠呼吸暂停的潜力。结果强调了将LLMs纳入医疗诊断的前景,并取决于方法论的进步,以确保人工智能生成的输出的准确性和临床连贯性,从而提高LLMs在医疗决策中的可信度。大量实验证明,与最先进的方法相比,我们的方法在神经障碍诊断方面取得了卓越的性能,并得到了临床医生的验证。原创 2024-03-28 10:30:11 · 892 阅读 · 0 评论 -
Nature|通用医学人工智能的基础模型
高度灵活、可重复使用的人工智能(AI)模型的异常快速发展可能会在医学领域带来新的能力。我们提出了一种新的医学AI范式,我们称之为通用医学AI(GMAI)。原创 2024-03-28 10:24:24 · 584 阅读 · 0 评论 -
【Pytorch-EHR预处理代码解析】pytorch_ehr/Preprocessing/data_preprocessing_v1.py
整个脚本的目的是将原始的医疗数据进行清洗、转换和组织,使其成为适合于机器学习模型的输入格式。生成的数据可以用于训练模型来预测病人的未来访问或可能的疾病等。,合并这些数据,并根据患者ID对数据进行分组和排序。最后,它计算两次访问之间的时间间隔,并将处理后的数据存储在列表中,以便之后进行进一步的处理或分析。: 如果启用了调试模式,脚本将输出一些统计信息,比如访问次数、患者数量和唯一诊断编码的数量。这个映射允许将分类数据转换为模型可以理解的格式。这样,处理后的数据可以被永久存储并在需要时读取。原创 2024-03-27 14:48:26 · 437 阅读 · 0 评论 -
使用 Pytorch 对电子健康记录 (EHR) 进行预测建模 ZhiGroup
python3 main.py -root_dir -files -which_model -optimizer ....(根据需要提供尽可能多的参数)基于现有的工作(例如 Dr. AI 和 RETAIN),我们使用列表列表的腌制列表来表示电子健康记录(EHR),其中包含患者的诊断、用药和其他各种事件的历史。我们处理的泡菜数据:多级列表。,其中包含有关如何使用我们的软件包的分步指南。原创 2024-03-27 11:24:39 · 885 阅读 · 0 评论 -
Med-BERT - 预训练教程
的患者,并验证了其记录的质量。如果您有一个预先存在的词汇文件,您可以使用该文件的路径,也可以使用 NA 创建一个新文件。由于 Cerner HealthFacts 不包括诊断的确切日期,我们决定使用入院时出示 (POA) 标记等数据元素以及诊断优先级以及诊断是否记录在 EHR 中或仅添加到账单中(使用第三方系统) ),对遭遇中的诊断代码进行排序。标头中找到:如果您只需要预处理数据的子集,请在此处指定子集大小(应该是患者的数量)包含),如果将其设置为 0,它将包含所有数据。原创 2024-03-26 13:56:56 · 935 阅读 · 0 评论 -
CPLLM代码逐行解析
这段代码主要是在MIMIC-IV数据集上微调一个预训练的语言模型,用于慢性肾病的分类任务。训练过程中会评估模型在验证集上的性能,并在训练结束后在测试集上进行最终评估。通过这段代码,可以看到如何使用现有的预训练语言模型,结合LoRA和量化技术,在医疗领域的特定任务上进行高效的微调。这种方法可以在较小的数据集上取得良好的性能,同时减少计算资源的需求。预训练的语言模型(如LLaMA或BioMedLM),并在MIMIC-IV数据集上进行微调,用于慢性肾病的二元分类任务。模型的token embeddings。原创 2024-03-25 22:59:03 · 904 阅读 · 0 评论 -
LANCET子刊:MIMIC+eICU+AUMC+机器学习聚类+XGBoost多分类=CCI患者分类模型
慢性危重症(CCI)是重症监护病房(ICU)的一种“流行病”,是现代医学发展的必然结果。在过去的30年里,CCI在世界范围内的患病率不断上升,尤其是在高收入国家,这引起了学术界的关注。在美国,从2004年到2009年,以全国人口为基础的CCI总患病率为每10万人中34.4人,增长率为25.76%。在日本,一项全国性住院患者调查显示,CCI特定年龄人群的总体患病率为每10万人中42.0人,住院死亡率为28.6%。原创 2024-03-25 18:04:12 · 1523 阅读 · 1 评论 -
[论文解读]GraphCare:通过个性化知识图增强医疗保健预测GraphCare: Enhancing Healthcare Predictions with Personalized Knowle
临床预测模型通常依赖于患者的电子健康记录 (EHR),但整合医学知识来增强预测和决策具有挑战性。 这是因为个性化预测需要个性化知识图 (KG),而很难从患者 EHR 数据生成这些知识图。 为了解决这个问题,我们提出了GraphCare,一个使用外部 KG 来改进基于 EHR 的预测的框架。 我们的方法从大语言模型(LLM)和外部生物医学知识图谱中提取知识来构建特定于患者的知识图谱,然后将其用于训练我们提出的双注意力增强(BAT)图神经网络(GNN)以进行医疗保健预测。 在 MIMIC-III 和 MIMIC原创 2024-03-19 17:11:04 · 1237 阅读 · 1 评论 -
MIMIC数据库可以做哪些研究?
现在MIMIC魔方公众号正式推出云端MIMIC数据库内测,只需要下载navicat软件或pgAdmin软件(大约10分钟左右)即可免费链接远端MIMIC数据库,无需再在官网下载数据集进行本地数据库安装,省去了MIMIC数据库安装的繁琐程序及安装难度,助力更多研究者掌握MIMIC数据库(注意若要用云端MIMIC数据库请自行获取数据库官网使用授权,,需要在MIMIC官网获取MIMIC数据库使用许可证书)。HOSP模块主要记录住院患者的信息,包括人口统计学信息、检验学信息、临床诊断、治疗方案信息、预后信息等。原创 2024-03-11 17:14:55 · 2355 阅读 · 0 评论