数据库 数据清理 数据仓库 任务相关数据 数据挖掘 (狭义的数据挖掘) 模式评估 最后得出那些有用的模式,我们称为知识。
(一) 知识挖掘的步骤
1、了解应用领域:了解相关的知识和应用的目标;
2、创建目标数据集:选择数据;
3、数据清理和预处理:这个可能要占全过程的60%的工作量
4、数据缩减和变换:找到有用特征、维数缩减/变量缩减,不变量的表示。
5、选择数据挖掘的功能:数据总结,分类模型数据挖掘,回归分析,关联规则挖掘、聚类分析等
6、选择挖掘算法
7、数据挖掘:寻找感兴趣的模式
8、模式评估和知识表示:可视化,转换,消去冗余模式等等
9、运用发现的知识