机器学习笔记:SVM

本文介绍了支持向量机(SVM)的基本概念及其优缺点,重点讲解了如何选取支持向量并最大化其到分隔面的距离。同时,文章推荐了一些在线资源供进一步学习,并给出了在Python中使用sklearn库进行SVM实现的具体指南。
摘要由CSDN通过智能技术生成

SVM-Support Vector Machines-支持向量机

优点:泛化错误率低,计算开销不大,结果易解释。

缺点:对参数调节和核函数的选择敏感,原始分类器不加修改仅适用于处理二类问题。

适用数据类型:数值型和标称型数据

支持向量机最主要的还是选出离分隔超平面最近的点,这些点叫支持向量,然后最大化支持向量到分隔面的距离。

不能耐心的看完SVM的理论了,实在是太多。。等老师给我们讲的时候再去细细探讨下。

这里收藏个博客,慢慢看。

http://blog.csdn.net/abcjennifer/article/details/7849812/


平时使用svm就直接使用sklearn里的svm包

http://scikit-learn.org/stable/modules/classes.html#module-sklearn.svm


from sklearn import svm
svm.SVC 只能在数据集比较小的时候使用

大的数据集应该使用svm.LinearSVC

在高维度的数据集下应该使用svm.OneClassSVM

具体使用例子以及说明详见http://scikit-learn.org/stable/modules/classes.html#module-sklearn.svm

实在抱歉。。

给自己点了个踩

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值