机器学习入门学习笔记:(4.1)SVM算法

前言

支持向量机(Support Vector Machine,简称SVM)可以说是最经典的机器学习算法之一了。这几天再看SVM,参考了一些书籍和博客,这里把自己的笔记记录下来,以便以后复习查看。

间隔(margin)

分类学习最基本的思想就是:寻找一个超平面把数据集的样本空间划分成不同的样本。
比较直观的一种情况就是二维下的,如下图:
这里写图片描述(摘自百度百科)
直观上看,我们应该去寻找两类样本正中间的直线来划分这两类样本。图中有三根直线:先看绿线,不难发现,它穿过了黑色点集,分类肯定错误了;红线和蓝线都正确地分开了两类样本。然而,我们肯定都觉得蓝线不是一种很好的方法,因为它距离样本太近了,在这个数据集附近随机再取一个新的样本,很有可能就越过了它,导致分类错误;相对而言,红线更好,因为它到两类样本的距离都有一定距离,这也意味着,它对未知示例的泛化能力更强,是最鲁棒的。
以上也仅仅是直观上的理解,下面从数学层面进行分析。
在样本空间中我们用如下线性方程来描述划分超平面:

ωTx+b=0

其中, ω=(ω1,ω2,...,ωd) 为法向量,决定了超平面的方向; b 为法向量,决定了超平面与原点之间的距离;x为输入样本。
假设训练样本集 D={(x1,y1),(x2,y2),...,(xm,ym)}
接下来先推导样本空间中一个点到超平面距离的公式:
d=ωTx+bω


补充:样本空间中一个点到超平面距离的公式证明

我们要求:点 x0(x(1)0,x(2)0,...,x(n)0) 到超平面的 S:ωTx+b=0 的距离 d
先设点x1是点 x0 在超平面 S 上的投影,则肯定满足:ωTx1+b=0
由于点 x1 x0 的投影,所以 x0x1 与超平面 S 垂直,则x0x1与超平面 S 的法向量平行。
我们知道超平面S的法向量是: ω=(ω1,ω2,...,ωn)

|ωx0x1|=ωT|x0x1|cos<ω,x0x1>

由于平行,两向量的夹角为0度或者180度, |cos<ω,x0x1>|=1 .
所以:
|ωx0x1|=ωT|x0x1|=ωd(1)

又因为:
ωx0x1=ω1(x(1)1x(1)0)+ω2(x(2)1x(2)0)+...+ωn(x(n)1x(n)0)=(ω1x(1)1+ω2x(2)1+...+ωnx(n)1)(ω1x(1)0+ω2x(2)0+...+ωnx(n)0)

这里要用到前面的条件了,因为 x1 是超平面S内的点:
ωTx1+b=0ω1x(1)1+ω2x(2)1+...+ωnx(n)1+b=0

所以得到:
ωx0x1=(ω1x(1)0+ω2x(2)0+...+ωnx(n)0)b=(ωTx0+b)(2)

(1) (2) 式子两者联立:
|ωx0x1|=ωd=|(ωTx0+b)|

所以:
d=|ωTx0+b|ω


上面推导出了任意点 x 到超平面的距离,接着往下走。
假设有一个超平面H:ωTx+b=0能正确地将样本划分开来,那么同时也肯定存在两个平行于 H 的平面H1 H2

H1:ωTx+b=1H2:ωTx+b=1

距离超平面 H 距离最近的正负样本正好就分别在H1 H2 上,而这样的样本就是 支持向量
这里写图片描述
那么,假设超平面能将正负样本正确分类,则要满足如下条件:
对于任意样本 (xi,yi) 有,若 yi=1 ,即为正样本,满足 ωTxi+b>0 ;若 yi=1 ,即为负样本,满足 ωTxi+b<0
令:
{ωTxi+b1,yi=+1ωTxi+b1,yi=1(3)

使用之前推出的任意点 x 到超平面的距离的公式,不难发现,超平面H1 H2 之间的距离是:
d=2ω

这个东西就叫做 间隔(margin)。
而SVM的目标是就是找到一个超平面,使得 间隔取到最大值,同时也要能保证正确地划分正负样本。

对偶问题

既然我们的目标是最大化间隔(margin),那么可以给出如下问题:

maxω,b2ωs.t.yi(ωTxi+b)1,i=1,2,...,m

其中的约束条件: yi(ωTxi+b)1 由前面的式子(3)的约束条件推导得到。
欲最大化 2ω ,那么等价于最小化 ω ,那么也等价于最小化 ω2
那么上面的优化问题可以改写为:
minω,bω22s.t.yi(ωTxi+b)1,i=1,2,...,m

好的,上示就是SVM的基本型。
接下来考虑如何求解这个问题,找到最合适的 ω b
我们要用到拉格朗体乘数法进行求解,由于约束条件中还带有不等式约束,所以还需要考虑KKT条件。


补充:拉格朗日乘数法与KKT条件

通常的优化问题有三种:

  • 无约束优化问题:
    minxf(x)
    • 约束条件有等式优化问题:
      minxf(x)s.t.hi(x)=0,i=0,1,...,n
    • 约束条件有不等式优化问题:
      minxf(x)s.t.hi(x)=0,gi(x)0,i=0,1,...,n
    • 分别考虑这几种情况吧:
      无约束优化问题:求导,令导数为0,求得的解就是极值,随后从中选出最优解。
      约束条件有等式优化问题:使用拉格朗日乘数法,把等式约束 hi(x) 乘以一个拉格朗日系数并与 f(x) 加在一个式子中,这个函数称为拉格朗日函数,而系数称为拉格朗日乘子。通过拉格朗日函数对各个变量求导,令其为零,可以求得候选值集合,然后验证求得最优值。

      L(a,x)=f(x)+ahi(x)

      约束条件有不等式优化问题:同样使用拉格朗体乘数法,最常使用的就是KKT条件。与前面一样,将所有等式约束与不等式约束和 f(x) 写为一个函数,拉格朗日函数。通过一些条件,这些条件是可以求出最优值的必要条件,这个条件就是KKT条件。
      L(a,b,x)=f(x)+agi(x)+bhi(x)

      我们主要考虑的就是约束条件有不等式优化问题,毕竟我们的SVM的基本式就是有不等式约束。

      拉格朗日乘数法

      假设给出如下问题:

      minxf(x)s.t.hi(x)=0,gi(x)0,i=0,1,...,n

      对于等式约束与不等式约束,将其与 f(x) 组合,构成拉格朗日函数:
      L(a,b,x)=f(x)+agi(x)+bhi(x)

      对各参数求导取0,联立求得最优值。

      KKT条件

      对于含有不等式约束的优化问题,将其转换为对偶问题:

      maxa,bminxL(a,b,x)s.t.ai0,i=1,2,...,n

      其中 L(a,b,x) 为拉格朗日函数。
      L(a,b,x)=f(x)+agi(x)+bhi(x)

      KKT条件就是说,原始问题的最优值 x 与对偶问题最优值 a b 要满足如下关系:
      1. xL(a,b,x)=0,aL(a,b,x)=0,bL(a,b,x)=0
      2. agi(x)=0
      3. gi(x)0
      4. ai0,hj(x)=0
      当原始问题和对偶问题的解都满足KKT条件,并且 f(x) g(x) 都是凸函数是,原始问题与对偶问题的解相等。

      下面简单证明一下:
      就用前面给出的问题:

      minxf(x)s.t.hi(x)=0,gi(x)0,i=0,1,...,n

      我们可以构造函数:
      L(a,b,x)=f(x)+agi(x)+bhi(x)

      由于KKT条件还要有 a0
      我们发现:
      maxa,bL(a,b,x)=maxa,b(f(x)+agi(x)+bhi(x))

      由于 hi(x)=0 ,所以 maxa,bbhi(x))=0
      由于 gi(x)0 a0 ,所以 maxa,bagi(x))=0 。(这也正是拉格朗日常数的用意所在,只有在 ag(x)=0 L(a,b,x) 才能取到最大值,这是KKT的第二个条件)
      最后发现:
      maxa,bL(a,b,x)=maxa,bf(x)=f(x)

      因此我们最初的目标函数可以改写为:
      minxf(x)=minxmaxa,bL(a,b,x)

      如下展开对偶式子 maxa,bminxL(a,b,x) 可以发现我们的优化是满足 强对偶(对偶式子的最优值是等于原问题的最优值的):
      假设最后取得的最优值是 x
      maxa,bminxL(a,b,x)=maxa,bminx(f(x)+agi(x)+bhi(x))=maxa,b(minxf(x)+aminxgi(x)+bminxhi(x))=(maxa,bf(x)+maxa,b(aminxgi(x))+maxa,b(bminxhi(x)))

      由于 hi(x)=0 ,所以 maxa,b(bminxhi(x))=0
      由于 gi(x)0 a0 ,所以 maxa,b(aminxgi(x))=0
      所以上式变为:
      maxa,bminxL(a,b,x)=(maxa,bf(x))=f(x)=minxmaxa,bL(a,b,x)

      这里就证明了,原问题与对偶问题的最优值是相同的。
      原问题可以转换为对偶问题求解


      好的,回到SVM的问题上来。
      我们希望优化的问题是:

      minω,bω22s.t.yi(ωTxi+b)1,i=1,2,...,m

      建立拉格朗日函数:
      L(ω,b,α)=ω22+i=1mαi(1yi(ωTxi+b))

      其中 α=(α1,α2,...,αm) 为拉格朗日常数,且由KKT条件有: α0
      L(ω,b,α) 分别对 ω b 求导取0:
      这里涉及矩阵求导,不了解请自行百度
      Lω=(12ωTω)ω+mi=1αiωmi=1αiyiωTxiωmi=1αiyibω=ωi=1mαiyixi=0

      Lb=(12ωTω)b+mi=1αibmi=1αiyiωTxibmi=1αiyibb=i=1mαiyi=0

      所以得到两个式子;
      ω=i=1mαiyixi

      0=i=1mαiyi

      将它们代回到拉格朗日函数中,可以消去 ω b
      L(ω,b,α)=ω22+i=1mαi(1yi(ωTxi+b))=12ωTω+i=1mαii=1mαiyiωTxii=1mαiyib=12ωTi=1mαiyixi+i=1mαii=1mαiyiωTxibi=1mαiyi=12ωTi=1mαiyixi+i=1mαib0=i=1mαi12i=1mj=1mαiαjyiyjxixj

      接下来求原问题的对偶问题:
      maxαminω,bL(ω,b,α)=maxαminω,b(i=1mαi12i=1mj=1mαiαjyiyjxixj)=maxα(i=1mαi12i=1mj=1mαiαjyiyjxixj)

      KKT条件:
      α0,i=1mαiyi=01yif(xi)0,αi(1yif(xi))=0

      到这里SVM的模型已经出来了。现在我们的问题是如何求出这些 α 。有许多程序工具包可以帮助我们求解出合适的 α 参数,当然还有一种十分快速高效的算法:SMO。我们不妨先放一放这个问题,先从结果分析看看。
      我们可以求出 α ,随后套用前面的公式求出 ω b

      ω=i=1mαiyixib=yiωTxi

      观察一下不难发现,这里的b可能有很多个解,因为每一个样本集 (xi,yi) 都会对应一个b的可能取值。
      实际中采用一种更鲁棒的方法,即取所有的支持向量求解的b的均值:
      假设 S={i|αi>0,i=1,2,...,m} 为最后求得的支持向量集合。因为非支持向量的点对应的 αi=0 ,所以去掉那一部分,只保留支持向量即可求得 b
      b=1|S|sS(ysiSαiyixTixs)

      最后得到模型:

      f(x)=ωTx+b=i=1mαiyixTix+b

      由KKT条件:
      {α0αi(1yif(xi))=0

      分类讨论可以知道,只有可能有两种情况:
      - αi=0 ,此时这个样本在模型中不起作用,因为结果是0。
      - αi>0 ,那么,一定有 1yif(xi)=0 ,则: yif(xi)=1 。表示这个样本在最大间隔边界上,是支持向量。
      在这个模型中,除了支持向量的 αi>0 以外,其他样本都不起作用。如此一来,大部分样本都不会被保留,只会保留支持向量。

      这次就先到这里吧,下次在介绍svm的核函数、软间隔以及SMO算法等概念。前面推导分析了基本的SVM模型,也介绍了拉格朗日常数法与KKT条件的应用。不得不说,打公式很累啊。

      参考资料:
      《机器学习》周志华
      http://blog.csdn.net/dawnranger/article/details/53133450

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值