概念
基于图形的方法是半监督学习中一种非常有效的技术,特别适用于数据有明显的结构或关系的情况。以下是对这种方法的详细介绍:
基于图形的方法概述
在基于图形的方法中,数据点被看作图中的节点,节点之间的边表示数据点之间的关系。通过图的结构,可以利用标记数据和未标记数据的整体信息来提升模型的性能。
核心思想
基于图形的半监督学习的核心思想是使用图来表示数据点及其相互关系,然后利用图的结构进行传播和推理。这种方法假设相似的数据点有更大的可能性属于相同的类别。
关键步骤
-
图构建:
- 节点:每个数据点(包括标记和未标记)作为图的节点。
- 边:根据数据点之间的相似性(如距离度量)来构建边,可以使用k近邻(k-NN)方法、全连接图或其他方式来连接节点。
-
权重计算:
- 给每条边赋予权重,权重通常基于数据点之间的相似度。例如,使用高斯核函数计算相似性:
- 给每条边赋予权重,权重通常基于数据点之间的相似度。例如,使用高斯核函数计算相似性: