机器学习之基于图形的方法(Graph-based Methods) 半监督学习

这篇博客介绍了基于图形的方法在半监督学习中的应用,特别是标签传播和谐振器传播算法。通过构建数据点之间的图,利用图的结构进行标签传播,以提高模型在少量标记数据情况下的性能。这种方法广泛应用于文本分类、图像分类和社交网络分析,但也面临图构建复杂性、参数选择和噪声处理等挑战。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

概念

基于图形的方法是半监督学习中一种非常有效的技术,特别适用于数据有明显的结构或关系的情况。以下是对这种方法的详细介绍:

基于图形的方法概述

在基于图形的方法中,数据点被看作图中的节点,节点之间的边表示数据点之间的关系。通过图的结构,可以利用标记数据和未标记数据的整体信息来提升模型的性能。

核心思想

基于图形的半监督学习的核心思想是使用图来表示数据点及其相互关系,然后利用图的结构进行传播和推理。这种方法假设相似的数据点有更大的可能性属于相同的类别。

关键步骤

  1. 图构建

    • 节点:每个数据点(包括标记和未标记)作为图的节点。
    • :根据数据点之间的相似性(如距离度量)来构建边,可以使用k近邻(k-NN)方法、全连接图或其他方式来连接节点。
  2. 权重计算

    • 给每条边赋予权重,权重通常基于数据点之间的相似度。例如,使用高斯核函数计算相似性:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

贾斯汀玛尔斯

愿我的经历曾为你指明方向

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值