《Recurrent Chunking Mechanisms for Long-Text Machine Reading Comprehension》--论文分享

本文介绍了一种解决长文本机器阅读理解问题的新方法——RCM(Recurrent Chunking Mechanisms),通过强化学习来学习分段长度,并使用循环机制增强片段间的上下文交互,从而提高预测准确性。实验表明,该方法在处理长文本时能显著提升模型性能。
摘要由CSDN通过智能技术生成

作者:Sjw

时间:2021年4月30日     

今天要分享的是来自ACL2020的一篇论文,作者是:Hongyu Gong, Yelong Shen, Dian Yu,Jianshu Chen, Dong Yu 


目录

1.解决的问题

2.方法

2.1循环机制

2.2基于强化学习的分段策略

3.实验


1.解决的问题

现在的机器阅读理解模型大多数都是使用预训练模型(例如BERT)对文档和问题的联合上下文信息进行编码。但是这些基于transformer架构的模型只能采用固定长度(例如512,文本长度不足会进行填充)的文本作为输入。 需要处理更长的文本输入时,以前的方法通常将它们分成等距的段(比如通过设置滑窗大小为128),并根据每个段独立地预测答案,而不考虑其他段的信息。就像下图这种情况:

设滑窗长度为128,最大句长为512,那么长度为700的本文经过处理后会被切分为3段,第一段为0-512,第二段为128-640,第三段为256-700。

这种情况下,会产生需要预测的答案处在被分割的边界位置,导致丢失用于推理答案的上下文信息,而且片段与片段之间缺乏交互,又丢失了一部分信息。

为了说明上下文信息对答案预测的影响,作者还展示了答案片段的中心位置与文章的中心位置距离对F1值的影响:

可以看到,随着答案片段的中心位置与文章的中心位置的距离增大,F1值有着明显的下降。


2.方法

于是乎,作者就提出了一种更加科学的长文本分段方法,也就是本文要讲的: RCM(recurrent chunking mechanisms)通过强化学习的方式学习分段长度

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值