论文笔记丨Open Hierarchical Relation Extraction

本文提出开放层次关系提取(OHRE)任务,旨在利用关系层次结构提高OpenRE性能。OHRE框架包含关系表示学习和层次结构扩展两部分,通过分层课程学习和自上而下的层次扩展算法,有效地融合层次信息。实验表明,OHRE在关系聚类和层次扩展上优于现有模型。
摘要由CSDN通过智能技术生成

在这里插入图片描述


作者:凯

单位:燕山大学


Abstract

开放关系提取(OpenRE)旨在从开放域语料库中提取新的关系类型,在完成知识库(KBs)的关系方案(relation schemes)方面发挥着重要作用。大多数OpenRE方法在不考虑其分层依赖性的情况下,孤立地投射不同的关系类型。我们认为OpenRE在与关系层次结构密切相关的情况下固有。为了解决OpenRE和关系层次结构之间的双向连接,我们提出了开放分层关系提取的任务,并为任务提供了一种新颖的OHRE框架。为了有效地将层次信息集成到更好的新颖关系提取的关系表示中,我们提出了一种动态的分层三态物目标和分层课程训练范式。我们还提供了一种自上而下的层次扩展算法,可以将提取的关系添加到具有合理解释性的现有层次结构中。综合实验表明,OHRE在关系聚类和层次扩展方面以大型裕量优于最先进的模型。

Introduction

Open relation extraction (OpenRE) 旨在提取开放域全集的实体之间的新型关系类型,在完成知识库(KBS)的关系方面发挥着重要作用。当前OpenRE主要分为tagging-based 和 clustering-based的方法。tagging-based是从句子中抽取关系词组。clustering-based是基于相似度聚集关系实例到不同的groups,认为每个cluster就是一个relation。

然而大部分OpenRE模型把不同的关系映射到孤立的空间中,关系的分层组织在人类的抽象和泛化能力中起着核心作用。这种分层组织同时也构成了大规模knowledge base(KB)基础。
在这里插入图片描述

图中显示了从wiki数据集中学习到的图,OHRE通过开放域知识(Test instances)来拓展层次结构。这种关系层次结构对于建立KB的关系方案至关重要,并且还可以帮助用户更好地理解和利用各种下游任务的关系。

由于OpenRE的最终目标是自动建立和维护KBs的关系方案,因此开发可以直接将提取的新颖关系添加到现有的不完整关系层次结构中的OpenRE方法。此外,结合了现有关系的分层信息,还可以帮助OpenRE方法来模拟它们的相互依赖性。现有关系中的这种精炼语义连接可以提供可转让的指导来更好地提取新关系。

鉴于OpenRE和关系层次结构之间固有的双向连接,在这项工作中,目标是引入关系层次结构,以提高OpenRE性能,并直接将提取的新关系添加到现有层次结构中,这提出了独特的挑战。

其框架背后的关键直观是层次结构中关系之间的距离反映了它们的语义相似性,越近的关系应该具有更相似的表示。

Contribution

  1. 第一个处理OpenRE和关系层次结构之间的双向联系。提出了一种新颖的开放等级关系提取任务,旨在同时提供新的关系及其分层结构。
  2. 提出了OHRE模型,将分层信息聚合到到更好的关系表示中,通过自上而下的算法直接扩展现有关系层次结构。
  3. 两个数据集的实验展示了OHRE对关系聚类和等级扩展的有效性。

OHRE Framework

由两个模块组成。1. 学习分层信息的关系表示。2. 群集和将新颖关系链接到现有层次结构。

Relation Representation Learning

学习关系表示是开放分层关系提取的基础。我们谁用CNN对句子编码为关系表示,
在这里插入图片描述

如图所示,因为使用了分层信息,所以我们认为 r i 1 r_i^1 ri1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值