A Hierarchical Framework for Relation Extraction with Reinforcement Learning (2019 AAAI)
Idea:目前现存的关系抽取模型大多基于显式实体的情况下。即在进行关系抽取之前,句子中的实体已经被标记出。因此,关系类型和实体之间的交互并没有完全的被建模。本文提出了一种新颖的实体关系新范式,即将实体作为关系的参数来处理关系抽取。该模型提成了一种分层架构来增强实体和关系之间的交互。整个模型被分为两个强化学习策略:关系识别器和实体抽取器,该结构可以赋予模型处理重叠关系的能力。
任务定义:该模型将关系识别作为一个高级别的强化学习过程,将实体抽取作为一个低级别的强化学习过程。此联合学习任务可以被视为一个顺序扫描句子的过程。(I)高级别的关系识别器明确句子的某些位置包含某种关系。如果被判定含有关系,则低级别的过程从该句子片段中识别出对应该关系的实体。(II)当低级别的实体抽取器完成后。(III)高级别的关系识别器继续扫描(IV)句子的剩余部分寻找下一个关系。
Hierarchical Extraction Framework