A Hierarchical Framework for Relation Extraction with Reinforcement Learning

该博客介绍了一种新的关系抽取模型,通过将实体视为关系参数,增强实体和关系之间的交互。模型采用分层架构,包括一个高级别的关系识别器和一个低级别的实体抽取器,能够处理重叠关系。利用强化学习策略,关系识别被定义为高级任务,而实体抽取为低级任务,以此顺序扫描句子来识别关系和实体。
摘要由CSDN通过智能技术生成

A Hierarchical Framework for Relation Extraction with Reinforcement Learning 2019 AAAI

Idea目前现存的关系抽取模型大多基于显式实体的情况下。即在进行关系抽取之前,句子中的实体已经被标记出。因此,关系类型和实体之间的交互并没有完全的被建模。本文提出了一种新颖的实体关系新范式,即将实体作为关系的参数来处理关系抽取。该模型提成了一种分层架构来增强实体和关系之间的交互。整个模型被分为两个强化学习策略:关系识别器和实体抽取器,该结构可以赋予模型处理重叠关系的能力。

 

任务定义:该模型将关系识别作为一个高级别的强化学习过程,将实体抽取作为一个低级别的强化学习过程。此联合学习任务可以被视为一个顺序扫描句子的过程。(I)高级别的关系识别器明确句子的某些位置包含某种关系。如果被判定含有关系,则低级别的过程从该句子片段中识别出对应该关系的实体。(II)当低级别的实体抽取器完成后。(III)高级别的关系识别器继续扫描(IV)句子的剩余部分寻找下一个关系。

Hierarchical Extraction Framework

在模型无关的分层强化学习中,学习表示是一项重要的任务。学习表示是指通过提取有用的信息和特征来将观察数据转化为表示向量。这些表示向量可以用于解决强化学习问题中的决策和行动选择。 模型无关的分层强化学习是指不依赖于环境模型的强化学习方法。它通常由两个部分组成:低层控制策略和高层任务规划器。低层控制策略负责实际的行动选择和执行,而高层任务规划器则负责指导低层控制策略的决策过程。 学习表示在模型无关的分层强化学习中起到至关重要的作用。通过学习适当的表示,可以提高对观察数据的理解能力,使得模型能够捕捉到环境中的重要特征和结构。这些表示可以显著减少观察数据的维度,并提供更高层次的抽象,从而简化了决策和规划的过程。 学习表示的方法多种多样,包括基于深度学习的方法和基于特征选择的方法。基于深度学习的方法,如卷积神经网络和循环神经网络,可以通过学习多层次的特征表示来提取环境观察数据的有用信息。而基于特征选择的方法则通过选择最有信息量的特征来减少表示的维度,从而简化了模型的复杂度。 总之,学习表示在模型无关的分层强化学习中起到了至关重要的作用。通过学习适当的表示,模型可以更好地理解观察数据并进行决策和规划。不同的方法可以用来实现学习表示,包括基于深度学习的方法和基于特征选择的方法。这些方法的选择取决于具体任务和问题的需求。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值