在之前探索的RAG系统中,为了提升检索质量,我们通常会引入不同的检索方法进行不同的相关性检索,并最终整合所有的检索结果进行最终的排序。在这个过程中涉及到一个概念:RRF。那它是什么意思呢?它是怎样进行计算的呢?本文将帮助你理解这个概念。
RRF(Reciprocal Rank Fusion)是一种用于融合多个排名列表的方法,常用于信息检索领域中,特别是当有多个不同的检索模型产生的排名需要合并时。RRF 的目标是通过结合多个模型的优点来获得更高质量的最终排名。
RRF 的计算方式
-
初始化参数:
- 设定融合权重
,通常取值为 0.5,表示对每个排名列表赋予相等的权重。
- 设定参与融合的排名列表
。
- 设定融合权重
-
计算每个排名列表的倒数排名:
- 对于每个排名列表
中的每个文档
,计算其倒数排名
- 对于每个排名列表