原文转自:http://blog.csdn.net/yongshengsilingsa/article/details/7535496 ,感谢原创作者~~
这里总结网上自己找到的资料,搞一个简单的框架供大家参考一下。
OpenCV官方的SVM代码在http://www.opencv.org.cn/opencvdoc/2.3.2/html/doc/tutorials/ml/introduction_to_svm/introduction_to_svm.html
在http://blog.csdn.net/sangni007/article/details/7471222看到一段还不错的代码,结构清楚,虽然注释比较少,但很有参考价值,于是我添加了一些注释,看着更舒服。废话少说,直接上代码:
- [cpp] view plaincopyprint
- #include "cv.h"
- #include "highgui.h"
- #include "stdafx.h"
- #include <ml.h>
- #include <iostream>
- #include <fstream>
- #include <string>
- #include <vector>
- using namespace cv;
- using namespace std;
- int main(int argc, char** argv)
- {
- vector<string> img_path;//输入文件名变量
- vector<int> img_catg;
- int nLine = 0;
- string buf;
- ifstream svm_data( "E:/SVM_DATA.txt" );//首先,这里搞一个文件列表,把训练样本图片的路径都写在这个txt文件中,使用bat批处理文件可以得到这个txt文件
- unsigned long n;
- while( svm_data )//将训练样本文件依次读取进来
- {
- if( getline( svm_data, buf ) )
- {
- nLine ++;
- if( nLine % 2 == 0 )//这里的分类比较有意思,看得出来上面的SVM_DATA.txt文本中应该是一行是文件路径,接着下一行就是该图片的类别,可以设置为0或者1,当然多个也无所谓
- {
- img_catg.push_back( atoi( buf.c_str() ) );//atoi将字符串转换成整型,标志(0,1),注意这里至少要有两个类别,否则会出错
- }
- else
- {
- img_path.push_back( buf );//图像路径
- }
- }
- }
- svm_data.close();//关闭文件
- CvMat *data_mat, *res_mat;
- int nImgNum = nLine / 2; //读入样本数量 ,因为是每隔一行才是图片路径,所以要除以2
- 样本矩阵,nImgNum:横坐标是样本数量, WIDTH * HEIGHT:样本特征向量,即图像大小
- data_mat = cvCreateMat( nImgNum, 1764, CV_32FC1 ); //这里第二个参数,即矩阵的列是由下面的descriptors的大小决定的,可以由descriptors.size()得到,且对于不同大小的输入训练图片,这个值是不同的
- cvSetZero( data_mat );
- //类型矩阵,存储每个样本的类型标志
- res_mat = cvCreateMat( nImgNum, 1, CV_32FC1 );
- cvSetZero( res_mat );
- IplImage* src;
- IplImage* trainImg=cvCreateImage(cvSize(64,64),8,3);//需要分析的图片,这里默认设定图片是64*64大小,所以上面定义了1764,如果要更改图片大小,可以先用debug查看一下descriptors是多少,然后设定好再运行
- //开始搞HOG特征
- for( string::size_type i = 0; i != img_path.size(); i++ )
- {
- src=cvLoadImage(img_path[i].c_str(),1);
- if( src == NULL )
- {
- cout<<" can not load the image: "<<img_path[i].c_str()<<endl;
- continue;
- }
- cout<<" processing "<<img_path[i].c_str()<<endl;
- cvResize(src,trainImg); //读取图片
- HOGDescriptor *hog=new HOGDescriptor(cvSize(64,64),cvSize(16,16),cvSize(8,8),cvSize(8,8),9); //具体意思见参考文章1,2
- vector<float>descriptors;//结果数组
- hog->compute(trainImg, descriptors,Size(1,1), Size(0,0)); //调用计算函数开始计算
- cout<<"HOG dims: "<<descriptors.size()<<endl;
- //CvMat* SVMtrainMat=cvCreateMat(descriptors.size(),1,CV_32FC1);
- n=0;
- for(vector<float>::iterator iter=descriptors.begin();iter!=descriptors.end();iter++)
- {
- cvmSet(data_mat,i,n,*iter);//把HOG存储下来
- n++;
- }
- //cout<<SVMtrainMat->rows<<endl;
- cvmSet( res_mat, i, 0, img_catg[i] );
- cout<<" end processing "<<img_path[i].c_str()<<" "<<img_catg[i]<<endl;
- }
- CvSVM svm = CvSVM();//新建一个SVM
- CvSVMParams param;//这里是参数
- CvTermCriteria criteria;
- criteria = cvTermCriteria( CV_TERMCRIT_EPS, 1000, FLT_EPSILON );
- param = CvSVMParams( CvSVM::C_SVC, CvSVM::RBF, 10.0, 0.09, 1.0, 10.0, 0.5, 1.0, NULL, criteria );
- /*
- SVM种类:CvSVM::C_SVC
- Kernel的种类:CvSVM::RBF
- degree:10.0(此次不使用)
- gamma:8.0
- coef0:1.0(此次不使用)
- C:10.0
- nu:0.5(此次不使用)
- p:0.1(此次不使用)
- 然后对训练数据正规化处理,并放在CvMat型的数组里。
- */
- //☆☆☆☆☆☆☆☆☆(5)SVM学习☆☆☆☆☆☆☆☆☆☆☆☆
- svm.train( data_mat, res_mat, NULL, NULL, param );//训练啦
- //☆☆利用训练数据和确定的学习参数,进行SVM学习☆☆☆☆
- svm.save( "SVM_DATA.xml" );
- //检测样本
- IplImage *test;
- vector<string> img_tst_path;
- ifstream img_tst( "E:/SVM_TEST.txt" );//同输入训练样本,这里也是一样的,只不过不需要标注图片属于哪一类了
- while( img_tst )
- {
- if( getline( img_tst, buf ) )
- {
- img_tst_path.push_back( buf );
- }
- }
- img_tst.close();
- CvMat *test_hog = cvCreateMat( 1, 1764, CV_32FC1 );//注意这里的1764,同上面一样
- char line[512];
- ofstream predict_txt( "SVM_PREDICT.txt" );//把预测结果存储在这个文本中
- for( string::size_type j = 0; j != img_tst_path.size(); j++ )//依次遍历所有的待检测图片
- {
- test = cvLoadImage( img_tst_path[j].c_str(), 1);
- if( test == NULL )
- {
- cout<<" can not load the image: "<<img_tst_path[j].c_str()<<endl;
- continue;
- }
- cvZero(trainImg);
- cvResize(test,trainImg); //读取图片
- HOGDescriptor *hog=new HOGDescriptor(cvSize(64,64),cvSize(16,16),cvSize(8,8),cvSize(8,8),9); //具体意思见参考文章1,2
- vector<float>descriptors;//结果数组
- hog->compute(trainImg, descriptors,Size(1,1), Size(0,0)); //调用计算函数开始计算
- cout<<"HOG dims: "<<descriptors.size()<<endl;
- CvMat* SVMtrainMat=cvCreateMat(1,descriptors.size(),CV_32FC1);
- n=0;
- for(vector<float>::iterator iter=descriptors.begin();iter!=descriptors.end();iter++)
- {
- cvmSet(SVMtrainMat,0,n,*iter);
- n++;
- }
- int ret = svm.predict(SVMtrainMat);//获取最终检测结果,这个predict的用法见 OpenCV的文档
- std::sprintf( line, "%s %d\r\n", img_tst_path[j].c_str(), ret );
- predict_txt<<line;
- }
- predict_txt.close();
- //cvReleaseImage( &src);
- //cvReleaseImage( &sampleImg );
- //cvReleaseImage( &tst );
- //cvReleaseImage( &tst_tmp );
- cvReleaseMat( &data_mat );
- cvReleaseMat( &res_mat );
- return 0;
- }
[cpp] view plaincopyprint
#include "cv.h"
#include "highgui.h"
#include "stdafx.h"
#include <ml.h>
#include <iostream>
#include <fstream>
#include <string>
#include <vector>
using namespace cv;
using namespace std;
int main(int argc, char** argv)
{
vector<string> img_path;//输入文件名变量
vector<int> img_catg;
int nLine = 0;
string buf;
ifstream svm_data( "E:/SVM_DATA.txt" );//首先,这里搞一个文件列表,把训练样本图片的路径都写在这个txt文件中,使用bat批处理文件可以得到这个txt文件
unsigned long n;
while( svm_data )//将训练样本文件依次读取进来
{
if( getline( svm_data, buf ) )
{
nLine ++;
if( nLine % 2 == 0 )//这里的分类比较有意思,看得出来上面的SVM_DATA.txt文本中应该是一行是文件路径,接着下一行就是该图片的类别,可以设置为0或者1,当然多个也无所谓
{
img_catg.push_back( atoi( buf.c_str() ) );//atoi将字符串转换成整型,标志(0,1),注意这里至少要有两个类别,否则会出错
}
else
{
img_path.push_back( buf );//图像路径
}
}
}
svm_data.close();//关闭文件
CvMat *data_mat, *res_mat;
int nImgNum = nLine / 2; //读入样本数量 ,因为是每隔一行才是图片路径,所以要除以2
样本矩阵,nImgNum:横坐标是样本数量, WIDTH * HEIGHT:样本特征向量,即图像大小
data_mat = cvCreateMat( nImgNum, 1764, CV_32FC1 ); //这里第二个参数,即矩阵的列是由下面的descriptors的大小决定的,可以由descriptors.size()得到,且对于不同大小的输入训练图片,这个值是不同的
cvSetZero( data_mat );
//类型矩阵,存储每个样本的类型标志
res_mat = cvCreateMat( nImgNum, 1, CV_32FC1 );
cvSetZero( res_mat );
IplImage* src;
IplImage* trainImg=cvCreateImage(cvSize(64,64),8,3);//需要分析的图片,这里默认设定图片是64*64大小,所以上面定义了1764,如果要更改图片大小,可以先用debug查看一下descriptors是多少,然后设定好再运行
//开始搞HOG特征
for( string::size_type i = 0; i != img_path.size(); i++ )
{
src=cvLoadImage(img_path[i].c_str(),1);
if( src == NULL )
{
cout<<" can not load the image: "<<img_path[i].c_str()<<endl;
continue;
}
cout<<" processing "<<img_path[i].c_str()<<endl;
cvResize(src,trainImg); //读取图片
HOGDescriptor *hog=new HOGDescriptor(cvSize(64,64),cvSize(16,16),cvSize(8,8),cvSize(8,8),9); //具体意思见参考文章1,2
vector<float>descriptors;//结果数组
hog->compute(trainImg, descriptors,Size(1,1), Size(0,0)); //调用计算函数开始计算
cout<<"HOG dims: "<<descriptors.size()<<endl;
//CvMat* SVMtrainMat=cvCreateMat(descriptors.size(),1,CV_32FC1);
n=0;
for(vector<float>::iterator iter=descriptors.begin();iter!=descriptors.end();iter++)
{
cvmSet(data_mat,i,n,*iter);//把HOG存储下来
n++;
}
//cout<<SVMtrainMat->rows<<endl;
cvmSet( res_mat, i, 0, img_catg[i] );
cout<<" end processing "<<img_path[i].c_str()<<" "<<img_catg[i]<<endl;
}
CvSVM svm = CvSVM();//新建一个SVM
CvSVMParams param;//这里是参数
CvTermCriteria criteria;
criteria = cvTermCriteria( CV_TERMCRIT_EPS, 1000, FLT_EPSILON );
param = CvSVMParams( CvSVM::C_SVC, CvSVM::RBF, 10.0, 0.09, 1.0, 10.0, 0.5, 1.0, NULL, criteria );
/*
SVM种类:CvSVM::C_SVC
Kernel的种类:CvSVM::RBF
degree:10.0(此次不使用)
gamma:8.0
coef0:1.0(此次不使用)
C:10.0
nu:0.5(此次不使用)
p:0.1(此次不使用)
然后对训练数据正规化处理,并放在CvMat型的数组里。
*/
//☆☆☆☆☆☆☆☆☆(5)SVM学习☆☆☆☆☆☆☆☆☆☆☆☆
svm.train( data_mat, res_mat, NULL, NULL, param );//训练啦
//☆☆利用训练数据和确定的学习参数,进行SVM学习☆☆☆☆
svm.save( "SVM_DATA.xml" );
//检测样本
IplImage *test;
vector<string> img_tst_path;
ifstream img_tst( "E:/SVM_TEST.txt" );//同输入训练样本,这里也是一样的,只不过不需要标注图片属于哪一类了
while( img_tst )
{
if( getline( img_tst, buf ) )
{
img_tst_path.push_back( buf );
}
}
img_tst.close();
CvMat *test_hog = cvCreateMat( 1, 1764, CV_32FC1 );//注意这里的1764,同上面一样
char line[512];
ofstream predict_txt( "SVM_PREDICT.txt" );//把预测结果存储在这个文本中
for( string::size_type j = 0; j != img_tst_path.size(); j++ )//依次遍历所有的待检测图片
{
test = cvLoadImage( img_tst_path[j].c_str(), 1);
if( test == NULL )
{
cout<<" can not load the image: "<<img_tst_path[j].c_str()<<endl;
continue;
}
cvZero(trainImg);
cvResize(test,trainImg); //读取图片
HOGDescriptor *hog=new HOGDescriptor(cvSize(64,64),cvSize(16,16),cvSize(8,8),cvSize(8,8),9); //具体意思见参考文章1,2
vector<float>descriptors;//结果数组
hog->compute(trainImg, descriptors,Size(1,1), Size(0,0)); //调用计算函数开始计算
cout<<"HOG dims: "<<descriptors.size()<<endl;
CvMat* SVMtrainMat=cvCreateMat(1,descriptors.size(),CV_32FC1);
n=0;
for(vector<float>::iterator iter=descriptors.begin();iter!=descriptors.end();iter++)
{
cvmSet(SVMtrainMat,0,n,*iter);
n++;
}
int ret = svm.predict(SVMtrainMat);//获取最终检测结果,这个predict的用法见 OpenCV的文档
std::sprintf( line, "%s %d\r\n", img_tst_path[j].c_str(), ret );
predict_txt<<line;
}
predict_txt.close();
//cvReleaseImage( &src);
//cvReleaseImage( &sampleImg );
//cvReleaseImage( &tst );
//cvReleaseImage( &tst_tmp );
cvReleaseMat( &data_mat );
cvReleaseMat( &res_mat );
return 0;
}
其中,关于HOG函数HOGDescriptor,见博客 http://blog.csdn.net/raocong2010/article/details/6239431
另外,自己需要把这个程序嵌入到另外一个工程中去,因为那里数据类型是Mat,不是cvMat,所以我又修改了上面的程序,并且图片大小也不是固定的64*64,需要自己设置一下图片大小,因为太懒,直接把改好的程序放过来:
- #include "stdafx.h"
- #include "cv.h"
- #include "highgui.h"
- #include "stdafx.h"
- #include <ml.h>
- #include <iostream>
- #include <fstream>
- #include <string>
- #include <vector>
- using namespace cv;
- using namespace std;
- int main(int argc, char** argv)
- {
- int ImgWidht = 120;
- int ImgHeight = 120;
- vector<string> img_path;
- vector<int> img_catg;
- int nLine = 0;
- string buf;
- ifstream svm_data( "E:/apple/SVM_DATA.txt" );
- unsigned long n;
- while( svm_data )
- {
- if( getline( svm_data, buf ) )
- {
- nLine ++;
- if( nLine < 5 )
- {
- img_catg.push_back(1);
- img_path.push_back( buf );//图像路径
- }
- else
- {
- img_catg.push_back(0);
- img_path.push_back( buf );//图像路径
- }
- }
- }
- svm_data.close();//关闭文件
- Mat data_mat, res_mat;
- int nImgNum = nLine; //读入样本数量
- 样本矩阵,nImgNum:横坐标是样本数量, WIDTH * HEIGHT:样本特征向量,即图像大小
- //data_mat = Mat::zeros( nImgNum, 12996, CV_32FC1 );
- //类型矩阵,存储每个样本的类型标志
- res_mat = Mat::zeros( nImgNum, 1, CV_32FC1 );
- Mat src;
- Mat trainImg = Mat::zeros(ImgHeight, ImgWidht, CV_8UC3);//需要分析的图片
- for( string::size_type i = 0; i != img_path.size(); i++ )
- {
- src = imread(img_path[i].c_str(), 1);
- cout<<" processing "<<img_path[i].c_str()<<endl;
- resize(src, trainImg, cv::Size(ImgWidht,ImgHeight), 0, 0, INTER_CUBIC);
- HOGDescriptor *hog=new HOGDescriptor(cvSize(ImgWidht,ImgHeight),cvSize(16,16),cvSize(8,8),cvSize(8,8), 9); //具体意思见参考文章1,2
- vector<float>descriptors;//结果数组
- hog->compute(trainImg, descriptors, Size(1,1), Size(0,0)); //调用计算函数开始计算
- if (i==0)
- {
- data_mat = Mat::zeros( nImgNum, descriptors.size(), CV_32FC1 ); //根据输入图片大小进行分配空间
- }
- cout<<"HOG dims: "<<descriptors.size()<<endl;
- n=0;
- for(vector<float>::iterator iter=descriptors.begin();iter!=descriptors.end();iter++)
- {
- data_mat.at<float>(i,n) = *iter;
- n++;
- }
- //cout<<SVMtrainMat->rows<<endl;
- res_mat.at<float>(i, 0) = img_catg[i];
- cout<<" end processing "<<img_path[i].c_str()<<" "<<img_catg[i]<<endl;
- }
- CvSVM svm = CvSVM();
- CvSVMParams param;
- CvTermCriteria criteria;
- criteria = cvTermCriteria( CV_TERMCRIT_EPS, 1000, FLT_EPSILON );
- param = CvSVMParams( CvSVM::C_SVC, CvSVM::RBF, 10.0, 0.09, 1.0, 10.0, 0.5, 1.0, NULL, criteria );
- /*
- SVM种类:CvSVM::C_SVC
- Kernel的种类:CvSVM::RBF
- degree:10.0(此次不使用)
- gamma:8.0
- coef0:1.0(此次不使用)
- C:10.0
- nu:0.5(此次不使用)
- p:0.1(此次不使用)
- 然后对训练数据正规化处理,并放在CvMat型的数组里。
- */
- //☆☆☆☆☆☆☆☆☆(5)SVM学习☆☆☆☆☆☆☆☆☆☆☆☆
- svm.train( data_mat, res_mat, Mat(), Mat(), param );
- //☆☆利用训练数据和确定的学习参数,进行SVM学习☆☆☆☆
- svm.save( "E:/apple/SVM_DATA.xml" );
- //检测样本
- vector<string> img_tst_path;
- ifstream img_tst( "E:/apple/SVM_TEST.txt" );
- while( img_tst )
- {
- if( getline( img_tst, buf ) )
- {
- img_tst_path.push_back( buf );
- }
- }
- img_tst.close();
- Mat test;
- char line[512];
- ofstream predict_txt( "E:/apple/SVM_PREDICT.txt" );
- for( string::size_type j = 0; j != img_tst_path.size(); j++ )
- {
- test = imread( img_tst_path[j].c_str(), 1);//读入图像
- resize(test, trainImg, cv::Size(ImgWidht,ImgHeight), 0, 0, INTER_CUBIC);//要搞成同样的大小才可以检测到
- HOGDescriptor *hog=new HOGDescriptor(cvSize(ImgWidht,ImgHeight),cvSize(16,16),cvSize(8,8),cvSize(8,8),9); //具体意思见参考文章1,2
- vector<float>descriptors;//结果数组
- hog->compute(trainImg, descriptors,Size(1,1), Size(0,0)); //调用计算函数开始计算
- cout<<"The Detection Result:"<<endl;
- cout<<"HOG dims: "<<descriptors.size()<<endl;
- Mat SVMtrainMat = Mat::zeros(1,descriptors.size(),CV_32FC1);
- n=0;
- for(vector<float>::iterator iter=descriptors.begin();iter!=descriptors.end();iter++)
- {
- SVMtrainMat.at<float>(0,n) = *iter;
- n++;
- }
- int ret = svm.predict(SVMtrainMat);
- std::sprintf( line, "%s %d\r\n", img_tst_path[j].c_str(), ret );
- printf("%s %d\r\n", img_tst_path[j].c_str(), ret);
- getchar();
- predict_txt<<line;
- }
- predict_txt.close();
- return 0;
- }
#include "stdafx.h"
#include "cv.h"
#include "highgui.h"
#include "stdafx.h"
#include <ml.h>
#include <iostream>
#include <fstream>
#include <string>
#include <vector>
using namespace cv;
using namespace std;
int main(int argc, char** argv)
{
int ImgWidht = 120;
int ImgHeight = 120;
vector<string> img_path;
vector<int> img_catg;
int nLine = 0;
string buf;
ifstream svm_data( "E:/apple/SVM_DATA.txt" );
unsigned long n;
while( svm_data )
{
if( getline( svm_data, buf ) )
{
nLine ++;
if( nLine < 5 )
{
img_catg.push_back(1);
img_path.push_back( buf );//图像路径
}
else
{
img_catg.push_back(0);
img_path.push_back( buf );//图像路径
}
}
}
svm_data.close();//关闭文件
Mat data_mat, res_mat;
int nImgNum = nLine; //读入样本数量
样本矩阵,nImgNum:横坐标是样本数量, WIDTH * HEIGHT:样本特征向量,即图像大小
//data_mat = Mat::zeros( nImgNum, 12996, CV_32FC1 );
//类型矩阵,存储每个样本的类型标志
res_mat = Mat::zeros( nImgNum, 1, CV_32FC1 );
Mat src;
Mat trainImg = Mat::zeros(ImgHeight, ImgWidht, CV_8UC3);//需要分析的图片
for( string::size_type i = 0; i != img_path.size(); i++ )
{
src = imread(img_path[i].c_str(), 1);
cout<<" processing "<<img_path[i].c_str()<<endl;
resize(src, trainImg, cv::Size(ImgWidht,ImgHeight), 0, 0, INTER_CUBIC);
HOGDescriptor *hog=new HOGDescriptor(cvSize(ImgWidht,ImgHeight),cvSize(16,16),cvSize(8,8),cvSize(8,8), 9); //具体意思见参考文章1,2
vector<float>descriptors;//结果数组
hog->compute(trainImg, descriptors, Size(1,1), Size(0,0)); //调用计算函数开始计算
if (i==0)
{
data_mat = Mat::zeros( nImgNum, descriptors.size(), CV_32FC1 ); //根据输入图片大小进行分配空间
}
cout<<"HOG dims: "<<descriptors.size()<<endl;
n=0;
for(vector<float>::iterator iter=descriptors.begin();iter!=descriptors.end();iter++)
{
data_mat.at<float>(i,n) = *iter;
n++;
}
//cout<<SVMtrainMat->rows<<endl;
res_mat.at<float>(i, 0) = img_catg[i];
cout<<" end processing "<<img_path[i].c_str()<<" "<<img_catg[i]<<endl;
}
CvSVM svm = CvSVM();
CvSVMParams param;
CvTermCriteria criteria;
criteria = cvTermCriteria( CV_TERMCRIT_EPS, 1000, FLT_EPSILON );
param = CvSVMParams( CvSVM::C_SVC, CvSVM::RBF, 10.0, 0.09, 1.0, 10.0, 0.5, 1.0, NULL, criteria );
/*
SVM种类:CvSVM::C_SVC
Kernel的种类:CvSVM::RBF
degree:10.0(此次不使用)
gamma:8.0
coef0:1.0(此次不使用)
C:10.0
nu:0.5(此次不使用)
p:0.1(此次不使用)
然后对训练数据正规化处理,并放在CvMat型的数组里。
*/
//☆☆☆☆☆☆☆☆☆(5)SVM学习☆☆☆☆☆☆☆☆☆☆☆☆
svm.train( data_mat, res_mat, Mat(), Mat(), param );
//☆☆利用训练数据和确定的学习参数,进行SVM学习☆☆☆☆
svm.save( "E:/apple/SVM_DATA.xml" );
//检测样本
vector<string> img_tst_path;
ifstream img_tst( "E:/apple/SVM_TEST.txt" );
while( img_tst )
{
if( getline( img_tst, buf ) )
{
img_tst_path.push_back( buf );
}
}
img_tst.close();
Mat test;
char line[512];
ofstream predict_txt( "E:/apple/SVM_PREDICT.txt" );
for( string::size_type j = 0; j != img_tst_path.size(); j++ )
{
test = imread( img_tst_path[j].c_str(), 1);//读入图像
resize(test, trainImg, cv::Size(ImgWidht,ImgHeight), 0, 0, INTER_CUBIC);//要搞成同样的大小才可以检测到
HOGDescriptor *hog=new HOGDescriptor(cvSize(ImgWidht,ImgHeight),cvSize(16,16),cvSize(8,8),cvSize(8,8),9); //具体意思见参考文章1,2
vector<float>descriptors;//结果数组
hog->compute(trainImg, descriptors,Size(1,1), Size(0,0)); //调用计算函数开始计算
cout<<"The Detection Result:"<<endl;
cout<<"HOG dims: "<<descriptors.size()<<endl;
Mat SVMtrainMat = Mat::zeros(1,descriptors.size(),CV_32FC1);
n=0;
for(vector<float>::iterator iter=descriptors.begin();iter!=descriptors.end();iter++)
{
SVMtrainMat.at<float>(0,n) = *iter;
n++;
}
int ret = svm.predict(SVMtrainMat);
std::sprintf( line, "%s %d\r\n", img_tst_path[j].c_str(), ret );
printf("%s %d\r\n", img_tst_path[j].c_str(), ret);
getchar();
predict_txt<<line;
}
predict_txt.close();
return 0;
}
就到这里吧,再整理一下思路。
如果运行的时候出现Link错误,有可能是没有附加依赖项,要添加opencv_objdetect230d.lib,我的OpenCV是2.3版本,所以这里是230.