深度学习模型移植-替换torch.einsum算子

文章介绍了当ONNX不支持torch.einsum算子时,如何使用基本的torch.matmul进行矩阵运算作为替代方法。通过重塑张量并应用matmul函数,可以在不支持einsum的嵌入式平台上实现相同的功能。这种方法适用于需要在限制硬件资源的平台上运行的深度学习模型。
摘要由CSDN通过智能技术生成

onnx不支持torch.einsum算子,很多嵌入式端平台就更不支持了,下面给出用基本的矩阵计算torch.matmul替代orch.einsum算子的代码。

B = 2
D = 3
H = 4
W1 = 5
W2 = 6

fmap1 = torch.randn(B, D, H, W1)
fmap2 = torch.randn(B, D, H, W2)
corr_einsum = torch.einsum('aijk,aijh->ajkh', fmap1, fmap2)
print(corr_einsum.shape) # torch.Size([2, 4, 5, 6])

fmap1 = fmap1.reshape(B*D*H,W1,1)
fmap2 = fmap2.reshape(B*D*H,1,W2)

corr = torch.matmul(fmap1, fmap2)
corr = corr.reshape(B,D,H,W1,W2)
corr = torch.sum(corr, dim=1)

print(corr.shape)
print(corr_einsum.equal(corr))

torch.matmul属于基本矩阵操作,一般嵌入式平台都会支持的,如果连基本的矩阵操作不支持,那就建议跟老板提出换芯片平台吧哈哈~

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值