深入理解Spark ML:基于ALS矩阵分解的协同过滤算法与源码分析

本文深入探讨Spark MLlib中的ALS矩阵分解协同过滤算法,用于解决推荐系统中的数据稀疏问题。介绍了矩阵分解模型、交替最小二乘法(ALS)及其优化方法,以及显式反馈和隐式反馈模型的差异。通过Spark MLlib的ALS实现,展示了如何训练模型和构建基于物品的推荐系统,强调了ALS算法在并行计算中的优势,以提高大规模数据处理效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

重磅专栏推荐:
《大模型AIGC》
《课程大纲》
《知识星球》

本专栏致力于探索和讨论当今最前沿的技术趋势和应用领域,包括但不限于ChatGPT和Stable Diffusion等。我们将深入研究大型模型的开发和应用,以及与之相关的人工智能生成内容(AIGC)技术。通过深入的技术解析和实践经验分享,旨在帮助读者更好地理解和应用这些领域的最新进展

http://blog.csdn.net/u011239443/article/details/51752904

1. 引言

随着互联网的迅猛发展,为了满足人们在繁多的信息中获取自己需要内容的需求,个性化推荐应用而生。协同过滤推荐是其中运用最为成功的技术之一。其中,基于用户的最近邻法根据相似用户的评分来预测当前用户的评分。然而,在用户数量以及用户评分不足的情况下,该方法存在冷启动和数据稀疏的问题。为了解决这两个问题,业界提出了提出了基于项的最近邻法,利用项之间相似性稳定的特点可以离线计算相似性,降低了在线计算量,提高了推荐效率,但同样存在冷启动和数据稀疏问题。若使用 矩 阵 分 解 中 的 奇 异 值 分 解 ( Singular Value Decomposition,SVD) 减少评分矩阵的维数,之后应用最近邻法预测评分,一定程度上解决了同义词问题,但由于评分矩阵中大部分的评分是分解之前填充的,所以得到的特征矩阵不能直接用于评分。业界还提出了一种基于矩阵分解和用户近邻模型的算法,解决了数据稀疏的问题,但存在模型过拟合的问题。而协同过滤提出了一种支持不完整评分矩阵的矩阵分解方法,不用对评分矩阵进行估值填充,有很好的推荐精度。在 Netflix推荐系统竞赛中的应用表明,该矩阵分解相对于其他的推荐算法能产生更精确的推荐。 [ 1   2 ] ^{[1~2]} [1 2]

在矩阵分解推荐算法中,每项评分预测都需要整合现有评分集的信息。随着用户数与项目数的增长,算法的计算量也会随着增长,单机模式的推荐算法逐渐难以满足算法的计算以及推送的即时性需求,因此分布式推荐算法成为推荐算法中研究的一个新的方向。业界提出了分布式的矩阵分解算法,为矩阵分解的并行计算提供了一种可行的解决方案,但其使用的MapReduce框架在各计算节点的迭代计算中会产生过多的磁盘文件读写操作,影响了算法的执行效率。

本文旨在深入与Spark并行计算框架结合,探索协同过滤算法原理与在Spark上的实现,来解决大数据情况下矩阵分解推荐算法时间代价过高的问题。

2. 基于ALS矩阵分解协同过滤算法

如上述提及的,协同过滤提出了一种支持不完整评分矩阵的矩阵分解方法,不用对评分矩阵进行估值填充,有很好的推荐精度。Spark MLlib中实现的基于ALS矩阵分解协同过滤算法。下面我们来介绍下ALS矩阵分解

2.1 矩阵分解模型

用户对物品的打分行为可以表示成一个评分矩阵A(m*n),表示m个用户对n各物品的打分情况。如下表所示:

U\V v1 v2 v3 v4
u1 4 3 ? 5
u2 ? 5 4 5
u3 ? ? 3 3
u4 5 5 3 3
u5 2 1 5 ?

其中, A ( i , j ) A(i,j) A(i,j)表示用户 u s e r i user_i useri对物品 i t e m j item_j itemj的打分。但是,用户不会对所以物品打分,表中"?"表示用户没有打分的情况,所以这个矩阵A很多元素都是空的,我们称其为“缺失值(missing value)”。协同过滤提出了一种支持不完整评分矩阵的矩阵分解方法,不用对评分矩阵进行估值填充。在推荐系统中,我们希望得到用户对所有物品的打分情况,如果用户没有对一个物品打分,那么就需要预测用户是否会对该物品打分,以及会打多少分。这就是所谓的“矩阵补全(填空)”。

ALS 的核心假设是:打分矩阵A是近似低秩的,即一个 m ∗ n m*n mn的打分矩阵 A A A 可以用两个小矩阵 U ( m ∗ k ) U(m*k) U(mk) V ( n ∗ k ) V(n*k) V(nk)的乘积来近似:

A ≈ U V T , k < < m , n \large A \approx UV^T , k << m,n AUVT,k<<m,n

我们把打分理解成相似度,那么“打分矩阵 A ( m ∗ n ) A(m*n) A(mn)”就可以由“用户喜好特征矩阵 U ( m ∗ k ) U(m*k) U(mk)”和“产品特征矩阵 V ( n ∗ k ) V(n*k) V(nk)”的乘积。

2.2 交替最小二乘法(ALS)

我们使用用户喜好特征矩阵 U ( m ∗ k ) U(m*k) U(mk)中的第i个用户的特征向量 u i u_i ui,和产品特征矩阵 V ( n ∗ k ) V(n*k) V(nk)第j个产品的特征向量 v j v_j vj来预测打分矩阵 A ( m ∗ n ) A(m*n) A(mn)中的 a i j a_{ij} aij。我们可以得出一下的矩阵分解模型的损失函数为:

C = ∑ ( i , j ) ∈ R [ ( a i j − u i v j T ) 2 + λ ( u i 2 + v j 2 ) ] \large C = \sum\limits_{(i,j)\in R}[(a_{ij} - u_iv_j^T)^2+\lambda(u_i^2+v_j^2)] C=(i,j)R[(aijuivjT)2+λ(ui2+vj2)]

有了损失函数之后,下面就开始介绍优化方法。通常的优化方法分为两种:交叉最小二乘法(alternative least squares)和随机梯度下降法(stochastic gradient descent)。Spark使用的是交叉最小二乘法(ALS)来最优化损失函数。算法的思想就是:我们先随机生成然后固定它求解,再固定求解,这样交替进行下去,直到取得最优解 m i n ( C ) min(C) min(C)。因为每步迭代都会降低误差,并且误差是有下界的,所以 ALS 一定会收敛。但由于问题是非凸的,ALS 并不保证会收敛到全局最优解。但在实际应用中,ALS 对初始点不是很敏感,是否全局最优解造成的影响并不大。

算法的执行步骤:

  • 先随机生成一个。一般可以取0值或者全局均值。

  • 固定,即认为是已知的常量,来求解:
    C = ∑ ( i , j ) ∈ R [ ( a i j − u i ( 0 ) v j T ) 2 + λ ( ( u i 2 ) ( 0 ) + v j 2 ) ] \large C = \sum\limits_{(i,j)\in R}[(a_{ij} - u_i^{(0)}v_j^T)^2+\lambda((u_i^2)^{(0)}+v_j^2)] C=(i,j)R[(aijui(0)vjT)2+λ((ui2)(0)+vj2)]
    由于上式中只有 v j v_j vj一个未知变量,因此C的最优化问题转化为最小二乘问题,用最小二乘法求解 v j v_j vj的最优解:
    固定$ j , j\in (1,2,…,n) ,则:等式两边关于为 ,则:等式两边关于为 ,则:等式两边关于为v_j$求导得:

    $\large \frac{d(c)}{d(v_j)} $
    $\large= \frac{d}{d(v_j)}(\sum\limits_{i=1}^{m}[(a_{ij} - u_i^{(0)}v_j^T)^2+\lambda((u_i^2)^{(0)}+v_j^2)])$ 
    $\large= \sum\limits_{i=1}^m[2(a_{ij} - u_i^{(0)}v_j^T)(- (u_i^T)^{(0)})+2\lambda v_j]$
    $\large= 2\sum\limits_{i=1}^m[( u_i^{(0)}(u_i^T)^{(0)}+\lambda)v_j-a_{ij}(u_i^T)^{(0)}]$
    

d ( c ) d ( v j ) = 0 \large \frac{d(c)}{d(v_j)} =0 d(vj)d(c)=0,可得:
$\large\sum\limits_{i=1}^m[( u_i{(0)}(u_iT){(0)}+\lambda)v_j]=\sum\limits_{i=1}m a_{ij}(u_iT){(0)} $
= > ( U ( 0 ) ( U T ) ( 0 ) + λ E ) v j = a j T U ( 0 ) \large => (U^{(0)}(U^T)^{(0)} + \lambda E)v_j = a_j^TU^{(0)} =>(U(0)(UT)(0)+λE)vj=ajTU(0)

M 1 = U ( 0 ) ( U T ) ( 0 ) + λ E , M 2 = a j T U ( 0 ) M_1 = U^{(0)}(U^T)^{(0)} + \lambda E , M_2 = a_j^TU^{(0)} M1=U(0)(UT)(0)+λE,M2=ajTU(0),则 v j = M 1 − 1 M 2 v_j = M_1^{-1}M_2

<think>嗯,用户想了解基于矩阵分解协同过滤算法在数据挖掘中的应用和实现方法。首先,我得回顾一下矩阵分解的基本概念。根据引用[1]和[2],矩阵分解主要是将用户-物品评分矩阵分解为用户矩阵和物品矩阵,通过降维来预测缺失评分。用户可能想知道具体是怎么分解的,比如梯度下降法的应用。 然后,用户提到了数据挖掘中的应用,可能需要举例说明,比如推荐系统、评分预测等场景。引用[3]指出协同过滤曾是大公司的主推模型,说明其应用广泛,但也要提到现在的使用情况,比如结合深度学习的情况。 实现原理部分,需要解释损失函数和梯度下降的过程。引用[2]详细提到了损失函数的形式,即最小化预测评分和实际评分的平方差,再加上正则化项。这里可能需要用数学公式展示,比如$$L = \sum_{(u,i) \in K} (r_{ui} - q_i^T p_u)^2 + \lambda(||q_i||^2 + ||p_u||^2)$$,然后梯度下降的更新规则,如$$q_i \leftarrow q_i + \alpha (e_{ui} p_u - \lambda q_i)$$,其中$e_{ui} = r_{ui} - q_i^T p_u$。 实践部分需要给出代码示例,比如Python中使用随机梯度下降实现矩阵分解。可能还要提到数据预处理、参数调优等步骤。同时,要引用相关的文献或资料,比如引用[2]中的梯度下降公式。 用户可能存在的疑问包括过拟合如何处理,正则化参数的作用,或者如何评估模型性能。此外,需要比较传统协同过滤矩阵分解的优势,比如处理稀疏数据的能力。 最后,生成的相关问题要围绕应用场景、优化方法、比较分析等,确保覆盖用户可能感兴趣的扩展方向。</think>### 基于矩阵分解协同过滤算法原理实践 #### 一、核心思想数学原理 基于矩阵分解协同过滤算法通过将用户-物品评分矩阵 $R_{m \times n}$ 分解为两个低秩矩阵的乘积 $P_{m \times k} \cdot Q_{k \times n}$,其中 $k \ll m,n$。其目标函数定义为: $$L = \sum_{(u,i) \in K} (r_{ui} - q_i^T p_u)^2 + \lambda(||q_i||^2 + ||p_u||^2)$$ 其中 $r_{ui}$ 是用户 $u$ 对物品 $i$ 的实际评分,$p_u$ 和 $q_i$ 分别为用户和物品的隐向量,$\lambda$ 是正则化系数[^2]。 #### 二、实现步骤 1. **矩阵初始化** 随机生成用户矩阵 $P$ 和物品矩阵 $Q$,维度为 $k$(隐因子数量) 2. **梯度下降优化** 通过迭代更新参数: $$p_u \leftarrow p_u + \alpha (e_{ui} q_i - \lambda p_u)$$ $$q_i \leftarrow q_i + \alpha (e_{ui} p_u - \lambda q_i)$$ 其中 $e_{ui} = r_{ui} - q_i^T p_u$ 为预测误差,$\alpha$ 为学习率[^2] 3. **预测评分** 最终预测公式为: $$\hat{r}_{ui} = q_i^T p_u$$ #### 三、Python实现示例 ```python import numpy as np def matrix_factorization(R, k, steps=5000, alpha=0.0002, beta=0.02): m, n = R.shape P = np.random.rand(m, k) Q = np.random.rand(n, k) for step in range(steps): for u in range(m): for i in range(n): if R[u,i] > 0: e = R[u,i] - np.dot(P[u], Q[i]) P[u] += alpha * (e * Q[i] - beta * P[u]) Q[i] += alpha * (e * P[u] - beta * Q[i]) return P, Q # 示例评分矩阵(0表示缺失值) R = np.array([[5,3,0,1], [4,0,0,1], [1,1,0,5], [0,0,0,4]]) P, Q = matrix_factorization(R, k=2) pred_R = np.dot(P, Q.T) ``` #### 四、数据挖掘中的应用场景 1. **推荐系统** 在电商平台预测用户对未购买商品的评分(如亚马逊的商品推荐) 2. **评分预测** 处理Netflix等平台的电影评分稀疏矩阵(用户仅对部分内容评分) 3. **社交网络分析** 通过用户-内容交互矩阵发现潜在兴趣群体 #### 五、算法优势局限 **优势**: - 有效处理高维稀疏数据(用户-物品矩阵通常90%以上为空) - 可解释性强(隐因子可对应具体特征维度) - 支持增量更新(新用户/物品加入时只需更新局部参数) **局限**: - 冷启动问题(新用户/物品缺乏历史数据) - 对隐因子维度 $k$ 敏感(需通过交叉验证调参) - 无法利用辅助信息(如用户画像、物品属性) #### 六、工程实践建议 1. **数据预处理** - 对评分进行归一化(如Z-score标准化) - 处理异常值(过滤恶意刷分数据) 2. **参数调优** - 通过网格搜索确定最佳 $k$ 值(范围通常为10-200) - 设置动态学习率(随迭代次数衰减) 3. **性能优化** - 采用交替最小二乘法ALS)替代SGD加速收敛 - 使用Spark等分布式框架处理大规模矩阵
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小爷毛毛(卓寿杰)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值