关于有理式部分分式化解的初步理解

在一元函数求积分的部分,常常需要对分母为函数多项式的形式进行求积分。比如对 f(x)=1/(x2+3x+2) 进行积分,我们可以将 f(x) 因式分解为: f(x)=1/(x+1)(x+2) ,然后就能拆开成 f(x)=1/(x+1)1/(x+2) ,这样就是可积的类型了。

问题在于,只有两项且最高次均为一次的情况,我们太常见,因此,都不用过多思考。
但是如果是三次,四次,又当如何?

我的猜想,因为没有找到好的教材,只好拍脑袋想了。
每一个式子,必有它的一次,二次,直到最高次。
比如: f(x)=1/(x21)2 ,该怎么拆分。
我们知道 f(x)=1/(x1)2(x+1)2 所以可以化为的分式有 A/(x1),B/(x1)2,C/(x+1),D/(x+1)2 .

然后再用待定系数法求得A,B,C,D.

再比如,之前一直很难理解的一个问题:
f(x)=1/x(x1)2 ,按照上面的思路就豁然开朗了:化为 A/x+B/(x1)+C/(x1)2

也是用待定系数法解决。

这里的分子都是1,是不是意味着只有分子为1的时候才适用?不是的,如果分子的最高次比分母高,一定可以划出一个整数,其他的分子比分母次数低。比分母次数低的,我们再按照上面的拆项,待定系数,则问题立马可解了。

以上。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值