矩阵的初等变换
@(线性代数)
理解清楚 E i ( k ) , E i j , E i j ( k ) E_i(k), E_{ij}, E_{ij}(k) Ei(k),Eij,Eij(k)的含义。
E
i
(
k
)
E_i(k)
Ei(k):单位矩阵的第i行或者第i列乘以k倍得到的矩阵。
E
i
j
E_{ij}
Eij:单位矩阵第i行和第j行交换或者第i列和第j列交换得到的矩阵。
E
i
j
(
k
)
E_{ij}(k)
Eij(k):单位矩阵的第j行乘以k倍加到第i行,即被操作的行在前;那么也可以理解为第i列乘以k倍加到第j列。
再注意常用的三个求逆公式:
E
i
−
1
(
k
)
=
E
i
(
1
k
)
,
指
数
为
−
1
,
很
自
然
联
想
到
倒
数
E_i^{-1}(k) = E_i({1\over k}),指数为-1,很自然联想到倒数
Ei−1(k)=Ei(k1),指数为−1,很自然联想到倒数
E
i
j
−
1
=
E
i
j
,
仅
仅
交
换
行
,
不
改
变
逆
矩
阵
E_{ij}^{-1} = E_{ij},仅仅交换行,不改变逆矩阵
Eij−1=Eij,仅仅交换行,不改变逆矩阵
E
i
j
−
1
(
k
)
=
E
i
j
(
−
k
)
,
可
以
考
虑
成
综
合
上
面
两
种
形
式
,
一
个
大
动
一
个
不
动
变
成
这
里
的
轻
微
动
E_{ij}^{-1}(k) = E_{ij}(-k),可以考虑成综合上面两种形式,一个大动一个不动变成这里的轻微动
Eij−1(k)=Eij(−k),可以考虑成综合上面两种形式,一个大动一个不动变成这里的轻微动
看具体例子:
E i − 1 ( k ) = E i ( 1 k ) E_i^{-1}(k) = E_i({1\over k}) Ei−1(k)=Ei(k1)
[ 1 0 0 0 3 0 0 0 1 ] − 1 = [ 1 0 0 0 1 3 0 0 0 1 ] {\left[\begin{array}{ccc} 1& 0 &0 \\ 0& 3 &0 \\ 0& 0 &1 \end{array} \right]}^{-1} = \left[\begin{array}{ccc} 1& 0 &0 \\ 0&1 \over 3 &0 \\ 0& 0 &1 \end{array} \right] ⎣⎡100030001⎦⎤−1=⎣⎡1000310001⎦⎤
注意这里不是从左边的式子进行推导得出而是看左边的式子如何从单位矩阵操作得来,根据这个操作代入公式,运用在新的单位矩阵上。
本例是求倍乘矩阵的逆,是对第二行乘以3倍得到,那么逆就是对单位矩阵第二行除以3倍。
E i j − 1 = E i j E_{ij}^{-1} = E_{ij} Eij−1=Eij
[
0
1
0
1
0
0
0
0
1
]
−
1
=
[
0
1
0
1
0
0
0
0
1
]
{\left[\begin{array}{ccc} 0& 1 &0 \\ 1& 0 &0 \\ 0& 0 &1 \end{array} \right]}^{-1} = \left[\begin{array}{ccc} 0& 1 &0 \\ 1& 0 &0 \\ 0& 0 &1 \end{array} \right]
⎣⎡010100001⎦⎤−1=⎣⎡010100001⎦⎤
如如不动。
E i j − 1 ( k ) = E i j ( − k ) E_{ij}^{-1}(k) = E_{ij}(-k) Eij−1(k)=Eij(−k)
[
1
0
0
0
1
0
0
5
1
]
−
1
=
[
1
0
0
0
1
0
0
−
5
1
]
{\left[\begin{array}{ccc} 1& 0 &0 \\ 0& 1 &0 \\ 0& 5 &1 \end{array} \right]}^{-1} = \left[\begin{array}{ccc} 1& 0 &0 \\ 0& 1 &0 \\ 0& -5 &1 \end{array} \right]
⎣⎡100015001⎦⎤−1=⎣⎡10001−5001⎦⎤
同样也是找到操作的模式再用对应的公式去操作单位矩阵。
这里是把第二行乘以5倍加到第三行,那么逆就是第二行乘以-5倍加到第三行。
以上。