矩阵的初等变换

本文介绍了矩阵的初等变换,包括Ei(k)、Eij和Eij(k)的含义,并通过实例展示了如何求解这些变换的逆矩阵,帮助读者深入理解线性代数中的矩阵变换。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

矩阵的初等变换

@(线性代数)

理解清楚 E i ( k ) , E i j , E i j ( k ) E_i(k), E_{ij}, E_{ij}(k) Ei(k),Eij,Eij(k)的含义。

E i ( k ) E_i(k) Ei(k):单位矩阵的第i行或者第i列乘以k倍得到的矩阵。
E i j E_{ij} Eij:单位矩阵第i行和第j行交换或者第i列和第j列交换得到的矩阵。
E i j ( k ) E_{ij}(k) Eij(k):单位矩阵的第j行乘以k倍加到第i行,即被操作的行在前;那么也可以理解为第i列乘以k倍加到第j列。

再注意常用的三个求逆公式:
E i − 1 ( k ) = E i ( 1 k ) , 指 数 为 − 1 , 很 自 然 联 想 到 倒 数 E_i^{-1}(k) = E_i({1\over k}),指数为-1,很自然联想到倒数 Ei1(k)=Ei(k1),1
E i j − 1 = E i j , 仅 仅 交 换 行 , 不 改 变 逆 矩 阵 E_{ij}^{-1} = E_{ij},仅仅交换行,不改变逆矩阵 Eij1=Eij,
E i j − 1 ( k ) = E i j ( − k ) , 可 以 考 虑 成 综 合 上 面 两 种 形 式 , 一 个 大 动 一 个 不 动 变 成 这 里 的 轻 微 动 E_{ij}^{-1}(k) = E_{ij}(-k),可以考虑成综合上面两种形式,一个大动一个不动变成这里的轻微动 Eij1(k)=Eij(k),

看具体例子:

E i − 1 ( k ) = E i ( 1 k ) E_i^{-1}(k) = E_i({1\over k}) Ei1(k)=Ei(k1)

[ 1 0 0 0 3 0 0 0 1 ] − 1 = [ 1 0 0 0 1 3 0 0 0 1 ] {\left[\begin{array}{ccc} 1& 0 &0 \\ 0& 3 &0 \\ 0& 0 &1 \end{array} \right]}^{-1} = \left[\begin{array}{ccc} 1& 0 &0 \\ 0&1 \over 3 &0 \\ 0& 0 &1 \end{array} \right] 1000300011=1000310001

注意这里不是从左边的式子进行推导得出而是看左边的式子如何从单位矩阵操作得来,根据这个操作代入公式,运用在新的单位矩阵上。
本例是求倍乘矩阵的逆,是对第二行乘以3倍得到,那么逆就是对单位矩阵第二行除以3倍。

E i j − 1 = E i j E_{ij}^{-1} = E_{ij} Eij1=Eij

[ 0 1 0 1 0 0 0 0 1 ] − 1 = [ 0 1 0 1 0 0 0 0 1 ] {\left[\begin{array}{ccc} 0& 1 &0 \\ 1& 0 &0 \\ 0& 0 &1 \end{array} \right]}^{-1} = \left[\begin{array}{ccc} 0& 1 &0 \\ 1& 0 &0 \\ 0& 0 &1 \end{array} \right] 0101000011=010100001
如如不动。

E i j − 1 ( k ) = E i j ( − k ) E_{ij}^{-1}(k) = E_{ij}(-k) Eij1(k)=Eij(k)

[ 1 0 0 0 1 0 0 5 1 ] − 1 = [ 1 0 0 0 1 0 0 − 5 1 ] {\left[\begin{array}{ccc} 1& 0 &0 \\ 0& 1 &0 \\ 0& 5 &1 \end{array} \right]}^{-1} = \left[\begin{array}{ccc} 1& 0 &0 \\ 0& 1 &0 \\ 0& -5 &1 \end{array} \right] 1000150011=100015001
同样也是找到操作的模式再用对应的公式去操作单位矩阵。
这里是把第二行乘以5倍加到第三行,那么逆就是第二行乘以-5倍加到第三行。

以上。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值