线性代数学习笔记(十六)——初等变换(二)

本篇笔记首先介绍了初等方阵的定义、初等变换和初等方阵的关系、初等方阵求行列式、初等方阵求逆矩阵以及初等方阵求转置;然后介绍了初等方阵的用处,以及任意矩阵、初等矩阵和标准形之间的关系;最后介绍了矩阵可逆的两个充分必要条件,一个是矩阵的标准形为单位阵,另一个是矩阵可以表示成一些初等矩阵的乘积。

1 初等方阵

1.1 初待方阵的定义

对单位阵 E E E一次初等(行或列)变换得到的矩阵。

① 交换两行(或两列);
E = [ 1 1 1 1 ] → 交 换 第 一 行 和 第 三 行 [ 1 1 1 1 ] = E ( i , j ) E=\begin{bmatrix}\color{red}{1}&&&\\&1&&\\&&\color{#FF00FF}{1}&\\&&&1\end{bmatrix}\xrightarrow{交换第一行和第三行}\begin{bmatrix}&&\color{#FF00FF}{1}&\\&1&&\\\color{red}{1}&&&\\&&&1\end{bmatrix}=E(i, j) E=1111 1111=E(i,j)

记作: E ( i , j ) E(i, j) E(i,j),该矩阵就叫初等方阵。注意:该矩阵已经不再是单位矩阵。

② 用 k ( k ≠ 0 ) k(k{\neq}0) k(k=0)乘以某行(或某列);
E = [ 1 1 1 1 ] → 用 数 5 × 第 三 行 [ 1 1 5 1 ] = E ( i ( k ) ) E=\begin{bmatrix}1&&&\\&1&&\\&&\color{red}{1}&\\&&&1\end{bmatrix}\xrightarrow{用数5{\times}第三行}\begin{bmatrix}1&&&\\&1&&\\&&\color{#FF00FF}{5}&\\&&&1\end{bmatrix}=E(i(k)) E=11115× 1151=E(i(k))

记作: E ( i ( k ) ) E(i(k)) E(i(k)),要求 ( k ≠ 0 ) (k{\neq}0) (k=0),表示用 k k k乘以矩阵的第 i i i行或第 i i i列。

③ 某行(或列)的 l l l倍加到另一行(或列)上去;
E = [ 1 1 1 1 ] → 第 三 行 的 5 倍 加 到 第 一 行 [ 1 5 1 1 1 ] = E ( i , j ( l ) ) E=\begin{bmatrix}1&&&\\&1&&\\&&\color{red}{1}&\\&&&1\end{bmatrix}\xrightarrow{第三行的5倍加到第一行}\begin{bmatrix}1&&\color{#FF00FF}{5}&\\&1&&\\&&\color{red}{1}&\\&&&1\end{bmatrix}=E(i, j(l)) E=11115 11511=E(i,j(l))

记作: E ( i , j ( l ) ) E(i, j(l)) E(i,j(l)),表示第 j j j行的 l l l倍加到第 i i i行上去。注意:第③种初等行变换和列变换得到的结果不同,而第①种和②种初等行变换和列变换得到的结果相同。

1.2 初等变换和初等方阵的关系

初等变换 初等方阵
变化过程 方阵
[ ] → [ ] []\to[] [][] [ 1 1 3 1 ] \begin{bmatrix}1&&&\\&1&&\\&&3&\\&&&1\end{bmatrix} 1131
动作 结果

1.3 初等方阵求行列式

上述三种初等方阵的行列式分别为:

∣ 1 1 1 1 ∣ = − 1 ∣ 1 1 5 1 ∣ = 5 ∣ 1 5 1 1 1 ∣ = 1 \begin{vmatrix}&&\color{#FF00FF}{1}&\\&1&&\\\color{red}{1}&&&\\&&&1\end{vmatrix}=-1\qquad\begin{vmatrix}1&&&\\&1&&\\&&\color{#FF00FF}{5}&\\&&&1\end{vmatrix}=5\qquad\begin{vmatrix}1&&\color{#FF00FF}{5}&\\&1&&\\&&\color{red}{1}&\\&&&1\end{vmatrix}=1 1111=

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值