本篇笔记首先介绍了初等方阵的定义、初等变换和初等方阵的关系、初等方阵求行列式、初等方阵求逆矩阵以及初等方阵求转置;然后介绍了初等方阵的用处,以及任意矩阵、初等矩阵和标准形之间的关系;最后介绍了矩阵可逆的两个充分必要条件,一个是矩阵的标准形为单位阵,另一个是矩阵可以表示成一些初等矩阵的乘积。
1 初等方阵
1.1 初待方阵的定义
对单位阵 E E E做一次初等(行或列)变换得到的矩阵。
① 交换两行(或两列);
E = [ 1 1 1 1 ] → 交 换 第 一 行 和 第 三 行 [ 1 1 1 1 ] = E ( i , j ) E=\begin{bmatrix}\color{red}{1}&&&\\&1&&\\&&\color{#FF00FF}{1}&\\&&&1\end{bmatrix}\xrightarrow{交换第一行和第三行}\begin{bmatrix}&&\color{#FF00FF}{1}&\\&1&&\\\color{red}{1}&&&\\&&&1\end{bmatrix}=E(i, j) E=⎣⎢⎢⎡1111⎦⎥⎥⎤交换第一行和第三行⎣⎢⎢⎡1111⎦⎥⎥⎤=E(i,j)
记作: E ( i , j ) E(i, j) E(i,j),该矩阵就叫初等方阵。注意:该矩阵已经不再是单位矩阵。
② 用 k ( k ≠ 0 ) k(k{\neq}0) k(k=0)乘以某行(或某列);
E = [ 1 1 1 1 ] → 用 数 5 × 第 三 行 [ 1 1 5 1 ] = E ( i ( k ) ) E=\begin{bmatrix}1&&&\\&1&&\\&&\color{red}{1}&\\&&&1\end{bmatrix}\xrightarrow{用数5{\times}第三行}\begin{bmatrix}1&&&\\&1&&\\&&\color{#FF00FF}{5}&\\&&&1\end{bmatrix}=E(i(k)) E=⎣⎢⎢⎡1111⎦⎥⎥⎤用数5×第三行⎣⎢⎢⎡1151⎦⎥⎥⎤=E(i(k))
记作: E ( i ( k ) ) E(i(k)) E(i(k)),要求 ( k ≠ 0 ) (k{\neq}0) (k=0),表示用 k k k乘以矩阵的第 i i i行或第 i i i列。
③ 某行(或列)的 l l l倍加到另一行(或列)上去;
E = [ 1 1 1 1 ] → 第 三 行 的 5 倍 加 到 第 一 行 [ 1 5 1 1 1 ] = E ( i , j ( l ) ) E=\begin{bmatrix}1&&&\\&1&&\\&&\color{red}{1}&\\&&&1\end{bmatrix}\xrightarrow{第三行的5倍加到第一行}\begin{bmatrix}1&&\color{#FF00FF}{5}&\\&1&&\\&&\color{red}{1}&\\&&&1\end{bmatrix}=E(i, j(l)) E=⎣⎢⎢⎡1111⎦⎥⎥⎤第三行的5倍加到第一行⎣⎢⎢⎡11511⎦⎥⎥⎤=E(i,j(l))
记作: E ( i , j ( l ) ) E(i, j(l)) E(i,j(l)),表示第 j j j行的 l l l倍加到第 i i i行上去。注意:第③种初等行变换和列变换得到的结果不同,而第①种和②种初等行变换和列变换得到的结果相同。
1.2 初等变换和初等方阵的关系
初等变换 | 初等方阵 |
---|---|
变化过程 | 方阵 |
[ ] → [ ] []\to[] []→[] | [ 1 1 3 1 ] \begin{bmatrix}1&&&\\&1&&\\&&3&\\&&&1\end{bmatrix} ⎣⎢⎢⎡1131⎦⎥⎥⎤ |
动作 | 结果 |
1.3 初等方阵求行列式
上述三种初等方阵的行列式分别为:
∣ 1 1 1 1 ∣ = − 1 ∣ 1 1 5 1 ∣ = 5 ∣ 1 5 1 1 1 ∣ = 1 \begin{vmatrix}&&\color{#FF00FF}{1}&\\&1&&\\\color{red}{1}&&&\\&&&1\end{vmatrix}=-1\qquad\begin{vmatrix}1&&&\\&1&&\\&&\color{#FF00FF}{5}&\\&&&1\end{vmatrix}=5\qquad\begin{vmatrix}1&&\color{#FF00FF}{5}&\\&1&&\\&&\color{red}{1}&\\&&&1\end{vmatrix}=1 ∣∣∣∣∣∣∣∣1111∣∣∣∣∣∣∣∣=