二项分布的期望方差证明

本文详细介绍了二项分布的期望和方差的数学证明过程,通过转换组合数的方式逐步推导出期望公式EX=np和方差公式DX=np(1-p),从而帮助读者深入理解二项分布的统计特性。
摘要由CSDN通过智能技术生成

二项分布的期望方差证明

P ( X = k ) = ( n k ) p k q n − k , k = 0 , 1 , 2 , . . , n , q = 1 − p E X = ∑ k = 0 n k ( n k ) p k q n − k = ∑ k = 1 n k ( n k ) p k q n − k = ∑ k = 1 n k n ! k ! ( n − k ) ! p k q n − k = n p ∑ k = 1 n ( n − 1 ) ! ( k − 1 ) ! ( n − k ) ! p k − 1 q ( n − 1 ) − ( k − 1 ) = n p ∑ k = 1 n ( n − 1 k − 1 ) p k − 1 q ( n − 1 ) − ( k − 1 ) = n p [ ( n − 1 0 ) p 0 q n − 1 + ( n − 1 1 ) p 1 q n − 2 + . . . + ( n − 1 n − 1 ) p n − 1 q 0 ] = n p P(X=k) = {n\choose k}p^kq^{n-k}, k = 0,1,2,..,n,q = 1-p\\ EX = \sum_{k=0}^n k {n\choose k}p^kq^{n-k} \\ = \sum_{k=1}^n k {n\choose k}p^kq^{n-k} \\ = \sum_{k=1}^n k {\frac{n!}{k!(n-k)!}}p^kq^{n-k} \\ = np\sum_{k=1}^n {\frac{(n-1)!}{(k-1)!(n-k)!}}p^{k-1}q^{(n-1)-(k-1)} \\ = np\sum_{k=1}^n{n-1\choose k-1}p^{k-1}q^{(n-1)-(k-1)}\\ = np[{n-1\choose 0}p^0q^{n-1}+{n-1\choose 1}p^1q^{n-2}+...+{n-1\choose n-1}p^{n-1}q^0] \\ = np P(X=k)=(kn)pkqnk,k=0,1,2,..,n,q=1pEX=k=0nk(kn)pkqnk=k=1nk(kn)pkqnk=k=1nkk!(nk)!n!p

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值