Spark-利用SparkLauncher 类以JAVA API 编程的方式提交spark job

一.环境说明和使用软件的版本说明:

hadoop-version:hadoop-2.9.0.tar.gz 

spark-version:spark-2.2.0-bin-hadoop2.7.tgz

java-version:jdk1.8.0_151

集群环境:单机伪分布式环境。

二.适用背景

 在学习Spark过程中,资料中介绍的提交Spark Job的方式主要有两种(我所知道的):第一种是通过命令行的方式提交Job,使用spark 自带的spark-submit工具提交,官网和大多数参考资料都是已这种方式提交的,提交命令示例如下:

./spark-submit --class com.learn.spark.SimpleApp --master yarn --deploy-mode client --driver-memory 2g --executor-memory 2g --executor-cores 3  ../spark-demo.jar

参数含义就不解释了,请参考官网资料。

第二种提交方式是已JAVA API编程的方式提交,这种方式不需要使用命令行,直接可以在IDEA中点击Run 运行包含Job的Main类就行,Spark 提供了以SparkLanuncher 作为唯一入口的API来实现。这种方式很方便(试想如果某个任务需要重复执行,但是又不会写linux 脚本怎么搞?我想到的是以JAV API的方式提交Job, 还可以和Spring整合,让应用在tomcat中运行),官网的示例:http://spark.apache.org/docs/latest/api/java/index.html?org/apache/spark/launcher/package-summary.html

三.文章的目地

官网已有demo和API的情况下写这篇文章的目地:官网给出的demo 放在本机跑不了。出现的现象是程序结束了,什么输出都没有或者输出JAVA_HOME is not set,虽然我调用方法设置了,然而没啥用,因此把我搜索和加上在自己思考后能够运行的demo记录下来。

四.相关demo

   根据官网的示例这里有两种方式:

第一种是调用SparkLanuncher实例的startApplication方法,但是这种方式在所有配置都正确的情况下使用运行都会失败的,原因是startApplication方法会调用LauncherServer启动一个进程与集群交互,这个操作貌似是异步的,所以可能结果是main主线程结束了这个进程都没有起起来,导致运行失败。解决办法是调用new SparkLanuncher().startApplication后需要让主线程休眠一定的时间后者是使用下面的例子:

package com.learn.spark;

import org.apache.spark.launcher.SparkAppHandle;
import org.apache.spark.launcher.SparkLauncher;

import java.io.IOException;
import java.util.HashMap;
import java.util.concurrent.CountDownLatch;

public class LanuncherAppV {
    public static void main(String[] args) throws IOException, InterruptedException {


        HashMap env = new HashMap();
        //这两个属性必须设置
        env.put("HADOOP_CONF_DIR", "/usr/local/hadoop/etc/overriterHaoopConf");
        env.put("JAVA_HOME", "/usr/local/java/jdk1.8.0_151");
        //可以不设置
        //env.put("YARN_CONF_DIR","");
        CountDownLatch countDownLatch = new CountDownLatch(1);
        //这里调用setJavaHome()方法后,JAVA_HOME is not set 错误依然存在
        SparkAppHandle handle = new SparkLauncher(env)
                .setSparkHome("/usr/local/spark")
                .setAppResource("/usr/local/spark/spark-demo.jar")
                .setMainClass("com.learn.spark.SimpleApp")
                .setMaster("yarn")
                .setDeployMode("cluster")
                .setConf("spark.app.id", "11222")
                .setConf("spark.driver.memory", "2g")
                .setConf("spark.akka.frameSize", "200")
                .setConf("spark.executor.memory", "1g")
                .setConf("spark.executor.instances", "32")
                .setConf("spark.executor.cores", "3")
                .setConf("spark.default.parallelism", "10")
                .setConf("spark.driver.allowMultipleContexts", "true")
                .setVerbose(true).startApplication(new SparkAppHandle.Listener() {
                    //这里监听任务状态,当任务结束时(不管是什么原因结束),isFinal()方法会返回true,否则返回false
                    @Override
                    public void stateChanged(SparkAppHandle sparkAppHandle) {
                        if (sparkAppHandle.getState().isFinal()) {
                            countDownLatch.countDown();
                        }
                        System.out.println("state:" + sparkAppHandle.getState().toString());
                    }
                    
                    
                    @Override
                    public void infoChanged(SparkAppHandle sparkAppHandle) {
                        System.out.println("Info:" + sparkAppHandle.getState().toString());
                    }
                });
        System.out.println("The task is executing, please wait ....");
        //线程等待任务结束
        countDownLatch.await();
        System.out.println("The task is finished!");


    }
}
 注意:如果部署模式是cluster,但是代码中有标准输出的话将看不到,需要把结果写到HDFS中,如果是client模式则可以看到输出。

第二种方式是:通过SparkLanuncher.lanunch()方法获取一个进程,然后调用进程的process.waitFor()方法等待线程返回结果,但是使用这种方式需要自己管理运行过程中的输出信息,比较麻烦,好处是一切都在掌握之中,即获取的输出信息和通过命令提交的方式一样,很详细,实现如下:

package com.learn.spark;

import org.apache.spark.launcher.SparkAppHandle;
import org.apache.spark.launcher.SparkLauncher;

import java.io.IOException;
import java.util.HashMap;

public class LauncherApp {

    public static void main(String[] args) throws IOException, InterruptedException {
        
        HashMap env = new HashMap();
        //这两个属性必须设置
        env.put("HADOOP_CONF_DIR","/usr/local/hadoop/etc/overriterHaoopConf");
        env.put("JAVA_HOME","/usr/local/java/jdk1.8.0_151");
        //env.put("YARN_CONF_DIR","");

        SparkLauncher handle = new SparkLauncher(env)
                .setSparkHome("/usr/local/spark")
                .setAppResource("/usr/local/spark/spark-demo.jar")
                .setMainClass("com.learn.spark.SimpleApp")
                .setMaster("yarn")
                .setDeployMode("cluster")
                .setConf("spark.app.id", "11222")
                .setConf("spark.driver.memory", "2g")
                .setConf("spark.akka.frameSize", "200")
                .setConf("spark.executor.memory", "1g")
                .setConf("spark.executor.instances", "32")
                .setConf("spark.executor.cores", "3")
                .setConf("spark.default.parallelism", "10")
                .setConf("spark.driver.allowMultipleContexts","true")
                .setVerbose(true);


         Process process =handle.launch();
        InputStreamReaderRunnable inputStreamReaderRunnable = new InputStreamReaderRunnable(process.getInputStream(), "input");
        Thread inputThread = new Thread(inputStreamReaderRunnable, "LogStreamReader input");
        inputThread.start();

        InputStreamReaderRunnable errorStreamReaderRunnable = new InputStreamReaderRunnable(process.getErrorStream(), "error");
        Thread errorThread = new Thread(errorStreamReaderRunnable, "LogStreamReader error");
        errorThread.start();

        System.out.println("Waiting for finish...");
        int exitCode = process.waitFor();
        System.out.println("Finished! Exit code:" + exitCode);

    }
}

    使用的自定义InputStreamReaderRunnable类实现如下:

package com.learn.spark;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;

public class InputStreamReaderRunnable implements Runnable {

    private BufferedReader reader;

    private String name;

    public InputStreamReaderRunnable(InputStream is, String name) {
        this.reader = new BufferedReader(new InputStreamReader(is));
        this.name = name;
    }

    public void run() {
        System.out.println("InputStream " + name + ":");
        try {
            String line = reader.readLine();
            while (line != null) {
                System.out.println(line);
                line = reader.readLine();
            }
            reader.close();
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
}
五.总结

   官网给出的例子在某种配置下肯定是可以运行的,后续需要继续探索。

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值