pytorch实现CNN模型进行多分类(mnist)

使用的数据集:MNIST

import torch 
import numpy as np
import pandas as pd
import torch.nn as nn
import torch.nn.functional as F
import matplotlib.pyplot as plt
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
from torchvision.datasets import MNIST
from torch.utils.data import random_split
from torch.utils.data import TensorDataset
import torchvision.transforms as transforms

# 定义CNN模型,如果看不懂,需要先学习CNN过程
class Net(nn.Module):
    def __init__(self):
        super(Net,self).__init__()
        self.conv1 = nn.Sequential(
            nn.Conv2d(
                in_channels=1,
                out_channels=16,
                kernel_size=5,
                stride=1,
                padding=2,
            ),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2),
        )
        self.conv2 = nn.Sequential(
            nn.Conv2d(16,32,5,1,2),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2),
        )
        self.out = nn.Linear(32 * 7 * 7,10)
        
    
    def forward(self,x):
          
        x = self.conv1(x)
        x = self.conv2(x
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值