无监督学习之异常值检测算法~Isolation Forest

在数据分析中,异常检测对于及时发现系统故障或预测趋势至关重要。本文介绍了一种无监督学习方法——隔离森林(Isolation Forest),它能有效识别数据中的异常点。通过构建多个决策树并评估数据点的平均路径长度,该算法能够高效地找出潜在异常。文章还讨论了如何将此方法应用于实际业务场景。
摘要由CSDN通过智能技术生成

在数据分析领域,指标的突然上涨或者下降 是一个异常行为 ,这两种情况都值得我们去关注。如果我们标注了这些异常点,可以使用监督学习去检测异常点。但是业务开始的时候,没有业务反馈(数据打标)的时候,我们很难去发现这些异常点,也就是说需要训练样本。这样我们可以选择无监督学习的方法,比如Isolation Forest,One class SVM and LSTM。本文主要说明了Isolation Forest的使用方法,算法说明:

 

 

结论:我们可以通过dasaa或者pai直接落地,算法相对简单。

 

我理解这个算法的本质是:构建使用多个树,去查找所有值的深度,深度相对较浅的点,大概率是是异常点。这个如果和 四象限分析方 结合起来,是一个比较有意思的创新。

Image for post

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值