这几天看了几本中文教材,几本英文教材,深感概率论是一门跨度非常大,涉及数学面很广且理论很深的学科。本科时学的知识完全只是九牛一毛,但目前我也只能复述一些基本的本科内容,再附上点我个人的拙劣见解,权当用于给自己复习的『知识框架』了。
本来想总结一些典型的连续随机变量分布的分布函数、密度函数以及它们之间的转化关系,但看到卷积的知识后觉得这个从本科就开始的老大难问题一直困扰着大家,困难主要来源于公式的抽象,所以今天先用一些实际的例子从直观上理解一下卷积,因为再概率论和信号处理乃至今天的模式识别中,卷积都是大量存在的一种运算,现在deep learning的主要network也是卷积神经网络cnn(但cnn中的这个卷积概念其实很简单,至少从形式上看是这样的。)
1.关于卷积
本科时第一次接触卷积是在复变里,书里给的公式很是抽象:
∫+∞−∞f(x)g(t−x)dx
乍一看这是两个函数乘积之后在 (−∞,+∞) 上做了一个无穷积分,看不出什么直接的物理含义。我一开始学的时候也是各种挠头,觉得这是个很神奇的东西。但现代分析学中的很多内容还是脱胎于信号处理中的一些实际问题,所以还是有很明确的物理意义的。只不过教科书上不讲(这帮编书的人可真是布尔巴基学派的好学生)
首先先说一句卷积的本质:卷积就是一种加权求和,即: Sn=a0x0+a1x1+...+anxn 。那么这个简单的求和公式是如何变为