卷积的物理含义

这几天看了几本中文教材,几本英文教材,深感概率论是一门跨度非常大,涉及数学面很广且理论很深的学科。本科时学的知识完全只是九牛一毛,但目前我也只能复述一些基本的本科内容,再附上点我个人的拙劣见解,权当用于给自己复习的『知识框架』了。

本来想总结一些典型的连续随机变量分布的分布函数、密度函数以及它们之间的转化关系,但看到卷积的知识后觉得这个从本科就开始的老大难问题一直困扰着大家,困难主要来源于公式的抽象,所以今天先用一些实际的例子从直观上理解一下卷积,因为再概率论和信号处理乃至今天的模式识别中,卷积都是大量存在的一种运算,现在deep learning的主要network也是卷积神经网络cnn(但cnn中的这个卷积概念其实很简单,至少从形式上看是这样的。)

1.关于卷积

本科时第一次接触卷积是在复变里,书里给的公式很是抽象:
+f(x)g(tx)dx
乍一看这是两个函数乘积之后在 (,+) 上做了一个无穷积分,看不出什么直接的物理含义。我一开始学的时候也是各种挠头,觉得这是个很神奇的东西。但现代分析学中的很多内容还是脱胎于信号处理中的一些实际问题,所以还是有很明确的物理意义的。只不过教科书上不讲(这帮编书的人可真是布尔巴基学派的好学生)

首先先说一句卷积的本质:卷积就是一种加权求和,即: Sn=a0x0+a1x1+...+anxn 。那么这个简单的求和公式是如何变为

### 卷积物理意义 卷积的操作过程涉及将一个函数翻转并沿另一个函数滑动,进而计算两者之间的重叠部分之乘积积分。从物理学的角度来看,这表示了一个系统的响应如何受到外部输入的影响。当考虑线性时不变系统时,如果已知该系统的单位脉冲响应\(h(t)\),以及施加于系统的激励信号\(x(t)\),则输出\(y(t)=x(t)*h(t)\)即代表了这两个信号通过卷积运算得到的结果[^1]。 具体而言,在实际应用场景中,比如音频处理领域内,假设有一个房间内的音响设备播放音乐的同时记录下环境声学特性形成的回响效果;此时,若要模拟不同空间环境下同一首歌听起来的感觉,则可以通过获取目标场所特有的冲击响应并与原始歌曲执行卷积操作实现这一目的[^2]。 ### 应用领域 #### 图像识别与计算机视觉 在图像分析方面,卷积用于提取图像特征,例如边缘检测、纹理描述等。利用特定设计的小型模板(称为滤波器或核),这些模式可以在整个图像范围内移动以查找相似之处。这种方法不仅限于二维静态图形,还可以扩展到三维体积数据集甚至更高维度的空间对象上[^3]。 ```python import cv2 import numpy as np # 创建一个简单的水平边缘检测算子 kernel = np.array([[-1,-1,-1], [0,0,0], [1,1,1]]) # 加载灰度图 img_gray = cv2.imread('image.jpg', 0) # 对图像应用卷积操作 edges = cv2.filter2D(img_gray, -1, kernel) ``` #### 自然语言处理(NLP) 尽管NLP更倾向于采用循环神经网络(RNNs)及其变体LSTM/GRU来捕捉时间序列性质的信息流,但在短文本分类任务或是词向量表征学习过程中也可见到一维卷积的身影。这类方法能够有效地捕获局部上下文关系而不必依赖复杂的记忆机制。 #### 时间序列预测 对于具有周期性的经济指标变动趋势建模来说,适当选取窗口长度的时间窗卷积可以帮助挖掘潜在规律,并对未来走势做出合理预估。此外,在地震预报研究里,通过对历史震源位置分布实施多尺度下的时空域联合卷积变换也有助于提高预警精度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值