MIT_18.03_微分方程_Convolution_卷积_Notes

本文介绍了MIT 18.03课程中关于卷积的概念,从拉普拉斯变换的角度出发,通过幂级数类比推导卷积公式,并给出卷积的性质。卷积在信号处理中有重要应用,例如核废料衰变问题中,可以理解为输入率与衰变率的卷积。
摘要由CSDN通过智能技术生成

Convolution

已知两个拉普拉斯变换结果 F ( s ) , G ( s ) F(s),G(s) F(s),G(s),
F ( s ) = ∫ 0 ∞ e − s t f ( t ) d t G ( s ) = ∫ 0 ∞ e − s t g ( t ) d t F(s) = \int_{0}^{\infty}e^{-st}f(t)dt\\ G(s) = \int_{0}^{\infty}e^{-st}g(t)dt F(s)=0estf(t)dtG(s)=0estg(t)dt
它们的乘积 F ( s ) ⋅ G ( s ) F(s)\cdot G(s) F(s)G(s)为何?

我们知道拉普拉斯变换就是连续版的幂级数

于是我们可以用幂级数的乘积类比出卷积的公式
F ( x ) = ∑ 0 ∞ a n x n G ( x ) = ∑ 0 ∞ b n x n F ( x ) ⋅ G ( x ) = ∑ n = 0 ∞ ( ∑ m = 0 n a m b n − m ) x n F(x) = \sum_0^\infty a_nx^n\\ G(x) = \sum_0^\infty b_nx^n\\ F(x)\cdot G(x) = \sum_{n=0}^\infty(\sum_{m=0}^na_mb_{n-m})x^n F(x)=0anxnG(x)=0bnxnF(x)G(x)=n=0(m=0nambnm)xn
幂级数的乘积的系数乘为柯西乘积,思考:

x n x^n xn项可以由 1 , x n 1,x^n 1,

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值