Keras loss函数

原创 2018年04月16日 09:35:17
'''
Created on 2018-4-16

'''

def compile(
self,
optimizer, #优化器
loss, #损失函数,可以为已经定义好的loss函数名称,也可以为自己写的loss函数
metrics=None, #
sample_weight_mode=None, #如果你需要按时间步为样本赋权(2D权矩阵),将该值设为“temporal”。默认为“None”,代表按样本赋权(1D权),和fit中sample_weight在赋值样本权重中配合使用
weighted_metrics=None, 
target_tensors=None,
**kwargs #这里的设定的参数可以和后端交互。
)

实质调用的是Keras\engine\training.py 中的class Model中的def compile
一般使用model.compile(loss='categorical_crossentropy',optimizer='sgd',metrics=['accuracy'])

# keras所有定义好的损失函数loss:
# keras\losses.py
# 有些loss函数可以使用简称:
# mse = MSE = mean_squared_error
# mae = MAE = mean_absolute_error
# mape = MAPE = mean_absolute_percentage_error
# msle = MSLE = mean_squared_logarithmic_error
# kld = KLD = kullback_leibler_divergence
# cosine = cosine_proximity
# 使用到的数学方法:
# mean:求均值
# sum:求和
# square:平方
# abs:绝对值
# clip:[裁剪替换](https://blog.csdn.net/qq1483661204/article/details)
# epsilon:1e-7
# log:以e为底
# maximum(x,y):x与 y逐位比较取其大者
# reduce_sum(x,axis):沿着某个维度求和
# l2_normalize:l2正则化
# softplus:softplus函数
# 
# import cntk as C
# 1.mean_squared_error:
#     return K.mean(K.square(y_pred - y_true), axis=-1) 
# 2.mean_absolute_error:
#     return K.mean(K.abs(y_pred - y_true), axis=-1)
# 3.mean_absolute_percentage_error:
#     diff = K.abs((y_true - y_pred) / K.clip(K.abs(y_true),K.epsilon(),None))
#     return 100. * K.mean(diff, axis=-1)
# 4.mean_squared_logarithmic_error:
#     first_log = K.log(K.clip(y_pred, K.epsilon(), None) + 1.)
#     second_log = K.log(K.clip(y_true, K.epsilon(), None) + 1.)
#     return K.mean(K.square(first_log - second_log), axis=-1)
# 5.squared_hinge:
#     return K.mean(K.square(K.maximum(1. - y_true * y_pred, 0.)), axis=-1)
# 6.hinge(SVM损失函数):
#     return K.mean(K.maximum(1. - y_true * y_pred, 0.), axis=-1)
# 7.categorical_hinge:
#     pos = K.sum(y_true * y_pred, axis=-1)
#     neg = K.max((1. - y_true) * y_pred, axis=-1)
#     return K.maximum(0., neg - pos + 1.)
# 8.logcosh:
#     def _logcosh(x):
#         return x + K.softplus(-2. * x) - K.log(2.)
#     return K.mean(_logcosh(y_pred - y_true), axis=-1)
# 9.categorical_crossentropy:
#     output /= C.reduce_sum(output, axis=-1)
#     output = C.clip(output, epsilon(), 1.0 - epsilon())
#     return -sum(target * C.log(output), axis=-1)
# 10.sparse_categorical_crossentropy:
#     target = C.one_hot(target, output.shape[-1])
#     target = C.reshape(target, output.shape)
#     return categorical_crossentropy(target, output, from_logits)
# 11.binary_crossentropy:
#     return K.mean(K.binary_crossentropy(y_true, y_pred), axis=-1)
# 12.kullback_leibler_divergence:
#     y_true = K.clip(y_true, K.epsilon(), 1)
#     y_pred = K.clip(y_pred, K.epsilon(), 1)
#     return K.sum(y_true * K.log(y_true / y_pred), axis=-1)
# 13.poisson:
#     return K.mean(y_pred - y_true * K.log(y_pred + K.epsilon()), axis=-1)
# 14.cosine_proximity:
#     y_true = K.l2_normalize(y_true, axis=-1)
#     y_pred = K.l2_normalize(y_pred, axis=-1)
#     return -K.sum(y_true * y_pred, axis=-1)
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u011311291/article/details/79956195

Keras自定义Loss函数

前言 Keras本身提供了很多常用的loss函数(即目标函数),但这些损失函数都是比较基本的、通用的。有时候我们需要根据自己所做的任务来自定义损失函数,虽然Keras是一个很高级的封装,自定义los...
  • A_a_ron
  • A_a_ron
  • 2018-01-13 12:00:09
  • 827

Keras中自定义目标函数(损失函数)的简单方法

机器学习 python keras
  • Kyf_Coffee
  • Kyf_Coffee
  • 2016-12-28 22:27:54
  • 14516

Keras 多任务实现,Multi Loss

找了好久, 终于找到了:Keras Xception Multi loss 细粒度图像分类 这里只摘取关键代码: # create the base pre-trained model inp...
  • u012938704
  • u012938704
  • 2018-04-11 22:16:47
  • 23

keras中的目标函数和优化函数

目标函数就是我们常说的损失函数,优化函数就是我们常说的反调参数的函数,包括:梯度下降函数、随机梯度下降函数等。 这些我相信大家都很清楚了,下面我就简单的介绍一下keras提供的常见的目标函数和优化函...
  • zjm750617105
  • zjm750617105
  • 2016-05-05 15:27:05
  • 10271

keras 自定义 loss损失函数, sample在loss上的加权 和 metric

首先辨析一下概念: 1. loss是整体网络进行优化的目标, 是需要参与到优化运算,更新权值W的过程的 2. metric只是作为评价网络表现的一种“指标”, 比如accuracy,是为了直观地了解算...
  • xiaojiajia007
  • xiaojiajia007
  • 2017-06-15 09:42:40
  • 7774

keras画acc和loss曲线图

#加载keras模块 from __future__ import print_function import numpy as np np.random.seed(1337) # for repr...
  • u013381011
  • u013381011
  • 2017-12-27 14:24:44
  • 2064

keras 画训练过程曲线

# Fit the model history = tiramisu.fit(train_data, train_label, batch_size=batch_...
  • xiaojiajia007
  • xiaojiajia007
  • 2017-08-04 10:39:53
  • 4050

keras中的一些小tips(一)

写这篇博客的原因主要是为了总结下在深度学习中我们常会遇到的一些问题,以及不知道如何解决,我准备把这个部分作为一个系列,为了让大家少走一些坑,对于本博客有什么错误,欢迎大家指出,下面切入正题吧。 1. ...
  • momaojia
  • momaojia
  • 2017-06-06 14:31:59
  • 6309

keras做CNN的训练误差loss的下降

采用二值判断如果确认是噪声,用该点上面一个灰度进行替换。噪声点处理:对原点周围的八个点进行扫描,比较。当该点像素值与周围8个点的值小于N时,此点为噪点 。处理后的文件大小只有原文件小的三分之一,前后的...
  • fitzgerald0
  • fitzgerald0
  • 2018-01-08 14:06:15
  • 808

深度学习框架Keras使用心得

最近几个月为了写小论文,题目是关于用深度学习做人脸检索的,所以需要选择一款合适的深度学习框架,caffe我学完以后感觉使用不是很方便,之后有人向我推荐了Keras,其简单的风格吸引了我,之后的四个月我...
  • xjcvip007
  • xjcvip007
  • 2016-10-12 22:04:19
  • 17324
收藏助手
不良信息举报
您举报文章:Keras loss函数
举报原因:
原因补充:

(最多只允许输入30个字)