第九节:Keras深度学习框架实战之损失函数

本文深入探讨了Keras深度学习框架中的损失函数,包括其作用、常见类型及其在模型训练中的重要性。从均方误差、平均绝对误差到分类损失如交叉熵,解释了各种损失函数的计算公式和适用场景,帮助开发者选择最佳损失函数来优化模型性能。
摘要由CSDN通过智能技术生成

机器通过损失函数进行学习,这是一种评估特定算法对给定的数据建模程度的方法。如果预测值与真实值之前偏离较远,那么损失函数便会得到一个比较大的值。在一些优化函数的辅助下,损失函数逐渐学会减少预测值与真实值之间的这种误差。

机器学习中的所有算法都依赖于最小化或最大化某一个函数,我们称之为“目标函数”。最小化的这组函数被称为“损失函数”。损失函数是衡量预测模型预测结果表现的指标。寻找函数最小值最常用的方法是“梯度下降”。把损失函数想象成起伏的山脉,梯度下降就好比从山顶滑下,寻找山脉的最低点(目的)。

在实际应用中,并没有一个通用的,对所有的机器学习算法都表现的很不错的损失函数(或者说没有一个损失函数可以适用于所有类型的数据)。针对特定问题选择某种损失函数需要考虑到到许多因素,包括是否有离群点,机器学习算法的选择,运行梯度下降的时间效率,是否易于找到函数的导数,以及预测结果的置信度等。

利用损失函数计算损失值,模型就可以通过反向传播去更新各个参数,通过降低真实值与预测值之间的损失,使得模型计算得到的预测值趋近于真实值,从而达到模型训练的目的。损失函数需要为非负实值函数。

一.损失函数的使用
  损失函数【也称目标函数或优化评分函数】是编译模型时所需的两个参数之一。
  model.compile(loss='mean_squared_error'

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BBM的开源HUB

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值