动手学深度学习(PyTorch版)笔记 03 线性神经网络

3. 线性神经网络

3.1 线性回归

3.1.1 线性回归的基本元素
线性模型

回归(regression)是能为一个或多个自变量与因变量之间关系建模的一类方法。

线性回归的基本假设:

  1. 假设自变量 x \mathbf{x} x 和 因变量 y y y 之间的关系是线性的,即 y y y 可以表示为 x \mathbf{x} x 中元素的加权和。(通常允许包含观测值的一些噪声);
  2. 假设任何噪声都比较正常,如噪声遵循正态分布。

当我们的输入包含 d d d 个特征时,我们将预测结果 y ^ \hat{y} y^ (通常使用“尖角”符号表示 y y y 的估计值)表示为:
y ^ = w 1 x 1 + … + w d x d + b \hat{y}=w_{1} x_{1}+\ldots+w_{d} x_{d}+b y^=w1x1++wdxd+b
其中, w w w 称为权重(weight),决定了每个特征对预测值的影响; b b b 称为偏置(bias),指当所有特征值都为 0 时,预测值应该是多少。

上式可采用向量的点积形式表示为:
y ^ = w ⊤ x + b \hat{y}=\mathbf{w}^{\top} \mathbf{x}+b y^=wx+b
其中, x ∈ R d \mathbf{x} \in \mathbb{R}^{d} xRd w ∈ R d \mathbf{w} \in \mathbb{R}^{d} wRd

此外,若 X \mathbf{X} X 是一个特征集合 x ∈ R n × d \mathbf{x} \in \mathbb{R}^{n \times d} xRn×d w ∈ R d \mathbf{w} \in \mathbb{R}^{d} wRd,预测值 y ^ ∈ R n \mathbf{\hat{y}} \in \mathbb{R}^{n} y^Rn,上式可以表示为:
y ^ = X w + b \mathbf{\hat{y}}=\mathbf{X}\mathbf{w} +b y^=Xw+b
给定训练数据特征 X \mathbf{X} X 和对应的已知标签 y \mathbf{y} y , 线性回归的目标是找到一组权重向量 w \mathbf{w} w 和偏置 b b b: 当从 X \mathbf{X} X 的同分布中取样的新样本特征时, 这组权重向量和偏置能够使新样本的预测结果的误差尽可能小。

损失函数

损失函数(loss function)能够量化目标的实际值与预测值之间的差距,是一种模型质量的度量方式。通常我们会选择非负数作为损失,且数值越小表示损失越小,完美预测时的损失为 0 。回归问题中最常用的损失函数是平方误差函数。当样本 i i i 的预测值 为 y ^ ( i ) \hat{y}^{(i)} y^(i),其相应的真实标签为 y ( i ) y^{(i)} y(i) 时,平方误差可以定义为以下公式:
l ( i ) ( w , b ) = 1 2 ( y ^ ( i ) − y ( i ) ) 2 l^{(i)}(\mathbf{w}, b)=\frac{1}{2}\left(\hat{y}^{(i)}-y^{(i)}\right)^{2} l(i)(w,b)=21(y^(i)y(i))2
在训练模型时,我们希望寻找一组参数 ( w ∗ , b ∗ ) \left(\mathbf{w}^{*}, b^{*}\right) (w,b),这组参数能最小化在所有训练样本上的总损失。如下式:
w ∗ , b ∗ = argmin ⁡ w , b L ( w , b ) \mathbf{w}^{*}, b^{*}=\underset{\mathbf{w}, b}{\operatorname{argmin}} L(\mathbf{w}, b) w,b=w,bargminL(w,b)

解析解

线性回归的解可以用一个公式简单地表达出来, 这类解叫作解析解(analytical solution)。对于线性回归问题来说,我们的目标是最小化 ∥ y − X w ∥ 2 \|\mathbf{y}-\mathbf{X} \mathbf{w}\|^{2} yXw2,当损失关于 w \mathbf{w} w 的导数为 0 时,我们可以得到解析解:
w ∗ = ( X ⊤ X ) − 1 X ⊤ y \mathbf{w}^{*}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y} w=(XX)1Xy

梯度下降

梯度下降(gradient descent):通过不断地在损失函数递减的方向上更新参数来降低误差。
( w , b ) ← ( w , b ) − η ∣ B ∣ ∑ i ∈ B ∂ ( w , b ) l ( i ) ( w , b ) (\mathbf{w}, b) \leftarrow(\mathbf{w}, b)-\frac{\eta}{|\mathcal{B}|} \sum_{i \in \mathcal{B}} \partial_{(\mathbf{w}, b)} l^{(i)}(\mathbf{w}, b) (w,b)(w,b)BηiB(w,b)l(i)(w,b)
其中, $ |\mathcal{B}| $ 表示每个小批量中的样本数,这也称为批量大小 (batch size)。 η \eta η 表示学习率 (learning rate)。批量大小和学习率的值通常是手动预先指定,而不是通过模型训练得到的。这些可以调整但不在训练过程中更新的参数称为超参数 (hyperparameter)。调参 (hyperparameter tuning) 是选择超参数的过程。超参数通常是我们根据训练迭代结果来调整的,而训练迭代结果是在独立的验证数据集(validation dataset)上评估得到的。

预测

给定特征估计目标的过程通常称为预测(prediction)或推断(inference)。

3.1.2 矢量化加速

在训练模型时,我们希望同时处理整个小批量的样本,此时,需要对计算进行矢量化,从而利用线性代数库,而不使用 for 循环,以此来加速训练过程。

例如,对于两个 10000 维向量相加,若使用 for 循环逐位计算,将耗时 0.16749 sec ,而若是使用线性代数库进行矢量运算的话,仅耗时 0.00042 sec

定时器相关代码:

import time

class Timer:  #@save
    """记录多次运行时间"""
    def __init__(self):
        self.times = []
        self.start()

    def start(self):
        """启动计时器"""
        self.tik = time.time()

    def stop(self):
        """停止计时器并将时间记录在列表中"""
        self.times.append(time.time() - self.tik)
        return self.times[-1]

    def avg(self):
        """返回平均时间"""
        return sum(self.times) / len(self.times)

    def sum(self):
        """返回时间总和"""
        return sum(self.times)

    def cumsum(self):
        """返回累计时间"""
        return np.array(self.times).cumsum().tolist()
3.1.3 正态分布与平方损失

正态分布(normal distribution),也称为高斯分布(Gaussian distribution),若随机变量 X X X 服从一个平均数为 μ \mu μ 、标准差为 σ \sigma σ (方差 σ 2 \sigma ^2 σ2 )的正态分布,则记为:
X ∼ N ( μ , σ 2 ) X \sim N\left(\mu, \sigma^{2}\right) XN(μ,σ2)
则其概率密度函数为:
f ( x ) = 1 σ 2 π e − ( x − μ ) 2 2 σ 2 f(x)=\dfrac{1}{\sigma \sqrt{2 \pi}} e^{-\dfrac{(x-\mu)^{2}}{2 \sigma^{2}}} f(x)=σ2π 1e2σ2(xμ)2
假设观测中包含噪声,其中噪声服从正态分布,则包含噪声的 y y y 的分布如下式:
y = w ⊤ x + b + ϵ y=\mathbf{w}^{\top} \mathbf{x}+b+\epsilon y=wx+b+ϵ
其中, ϵ ∼ N ( 0 , σ 2 ) \epsilon \sim \mathcal{N}\left(0, \sigma^{2}\right) ϵN(0,σ2) 。因此,上式可以看作: ϵ = y − w ⊤ x − b \epsilon = y - \mathbf{w}^{\top} \mathbf{x} - b ϵ=ywxb

因此,我们现在可以写出通过给定的 x \mathbf{x} x 观测到特定 y y y 的似然(likelihood):
P ( y ∣ x ) = 1 2 π σ 2 exp ⁡ ( − 1 2 σ 2 ( y − w ⊤ x − b ) 2 ) . P(y \mid \mathbf{x})=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{1}{2 \sigma^{2}}\left(y-\mathbf{w}^{\top} \mathbf{x}-b\right)^{2}\right) . P(yx)=2πσ2 1exp(2σ21(ywxb)2).
补充说明:这边,我们可以把 ϵ = y − w ⊤ x − b \epsilon = y - \mathbf{w}^{\top} \mathbf{x} - b ϵ=ywxb 看作是网络的计算值与真实值之间的偏差,而这个偏差是符合正态分布的。此外, y y y 应该是一个线性值,也就是说 y y y 可以大于 1。同时,在给定 x x x 的情况下(观测值 w ⊤ x + b \mathbf{w}^{\top} \mathbf{x}+b wx+b )预测真实值 y y y 的概率应该是 P ( y ∣ x ) P(y \mid \mathbf{x}) P(yx)(因为噪声的存在,且噪声符合正态分布,因此该似然值符合正态分布,若不存在噪声,理论上,在 x \mathbf{x} x 的情况下预测出真实的 y y y 值的似然应该是1。例如 y y y 的真实值为 y = 1 y=1 y=1 ,则似然 P ( y = 1 ∣ x ) = 1  且  P ( y = o t h e r ∣ x ) = 0 P(y=1 \mid \mathbf{x})=1 \text{ 且 } P(y=other \mid \mathbf{x})=0 P(y=1x)=1  P(y=otherx)=0)。当 w ⊤ x + b \mathbf{w}^{\top} \mathbf{x}+b wx+b 越接近于 y y y 时( y − w ⊤ x − b y - \mathbf{w}^{\top} \mathbf{x} - b ywxb 越接近均值 μ = 0 \mu =0 μ=0 ),该值越大,因此这个概率值在 y = w ⊤ x + b y=\mathbf{w}^{\top} \mathbf{x}+b y=wx+b 时,将达到最大。而我们需要的做的是,确定一个 w , b w,b w,b ,使得 w ⊤ x + b \mathbf{w}^{\top} \mathbf{x}+b wx+b 能够尽可能的接近 y y y ,也就是,需要令 P ( y ∣ x ) P(y \mid \mathbf{x}) P(yx) 尽可能的大。

现在,根据极大似然估计法,参数 w \mathbf{w} w 和 $ b $ 的最优值是使整个数据集的似然最大的值(这边是一个相乘的运算,也就是计算每一次都预测正确的概率):
P ( y ∣ X ) = ∏ i = 1 n p ( y ( i ) ∣ x ( i ) ) . P(\mathbf{y} \mid \mathbf{X})=\prod_{i=1}^{n} p\left(y^{(i)} \mid \mathbf{x}^{(i)}\right) . P(yX)=i=1np(y(i)x(i)).
由于最大化函数较为困难,因此,将上式取负对数,将问题调整为取最小化负对数似然 − log ⁡ P ( y ∣ X ) -\log P(\mathbf{y} \mid \mathbf{X}) logP(yX)
− log ⁡ P ( y ∣ X ) = ∑ i = 1 n 1 2 log ⁡ ( 2 π σ 2 ) + 1 2 σ 2 ( y ( i ) − w ⊤ x ( i ) − b ) 2 -\log P(\mathbf{y} \mid \mathbf{X})=\sum_{i=1}^{n} \frac{1}{2} \log \left(2 \pi \sigma^{2}\right)+\frac{1}{2 \sigma^{2}}\left(y^{(i)}-\mathbf{w}^{\top} \mathbf{x}^{(i)}-b\right)^{2} logP(yX)=i=1n21log(2πσ2)+2σ21(y(i)wx(i)b)2

3.2 线性回归的从零开始实现

  1. torch.normal(mean, std, size=None)mean:正态分布的均值;std:正态分布的标准差;size:生成的随机数的形状, size 应是一个元组,若要表示包含 n n n 个元素的一维向量,元组表示为 (n,)
  2. list(range(num_examples)) 是一个用于生成一个包含从 0 到 num_examples - 1 的整数的列表。range() 是一个内置函数,它返回一个表示指定范围的整数序列的对象。当我们将 range() 的结果传递给 list() 函数时,它会将这个整数序列转换为一个列表。注意:range() 函数在Python 3中返回的是一个可迭代对象,而不是一个实际的列表。如果需要一个列表,可以使用 list() 函数将 range() 的结果转换为列表。
  3. yield :带有 yield 的函数在 Python 中被称为 generator (生成器),当首次调用 generator 时不会执行任何函数中的代码,直到调用 __next__() 时才会执行函数中的代码并返回一个迭代值,当下一次调用 __next__() 时代码会从 yield 的下一个语句开始执行。在 for...in... 遍历中, __next__() 会自动执行。
  4. with torch.no_grad():torch.no_grad() 是 PyTorch 中的一个上下文管理器,在 with torch.no_grad(): 中的计算不会计算梯度,在该上下文中对张量的操作不会被记录到计算图中。通常用于不需要计算梯度的前向传播场景或者梯度更新场景。
  5. with :python 中的 with 语句被用于异常处理,封装了 try...except...finally 编码范式。 with 上下文表达式 as 变量: 的执行过程是,首先执行上下文管理器的 __enter__ 函数,它的返回值会赋值给 as 后面的变量,当 with 中的语句执行完成后,将会调用上下文管理器的 __exit__ 函数来清理资源。例如,使用 with 打开一个文件,当 with 中的语句执行完成后,将会自动关闭文件。

3.3 线性回归的简介实现

  1. *变量 :当我们在变量名前加上* 符号时,它的作用是将一个可迭代对象(比如列表或元组)拆分成单个的元素,这个过程也被称为“拆包”。这意味着可以将一个列表或元组的元素作为单独的参数传递给函数。补充:在函数定义中,将一个星号放在变量名前面表示接受任意数量的位置参数。这意味着函数可以接受不确定数量的参数,并将它们作为一个元组传递给函数。
def my_function(*args):
    for arg in args:
        print(arg)

my_function(1, 2, 3)
'''
output:
1
2
3
'''
my_list = [1, 2, 3]
my_function(*my_list)
'''
output:
1
2
3
'''
numbers = [1, 2, 3, 4, 5]
first, *rest, last = numbers

print(first)  # 输出 1
print(rest)   # 输出 [2, 3, 4]
print(last)   # 输出 5
  1. Sequential类:Sequential 类将多个层串联在一起。 当给定输入数据时,Sequential 实例将数据传入到第一层, 然后将第一层的输出作为第二层的输入,以此类推。

  2. nn.Sequential(nn.Linear(2, 1)) :创建一个全连接层,第一个参数指定输入特征形状,第二个参数指定输出特征形状。

  3. nn.MSELoss() :均方误差损失。

  4. trainer = torch.optim.SGD(net.parameters(), lr=0.03) :创建一个采用SGD算法的优化器,需指定优化的参数 (可通过net.parameters()从模型中获得)以及优化算法所需的超参数字典。

  5. trainer.step() :更新模型参数。

在每个迭代周期里,我们将完整遍历一次数据集(train_data),不停地从中获取一个小批量 的输入和相应的标签。对于每一个小批量,我们会进行以下步骤:

  1. 通过调用 net ( X ) \text{net} (\mathrm{X}) net(X) 生成预测并计算损失 l l l (前向传播)。
  2. 通过进行反向传播来计算梯度。
  3. 通过调用优化器来更新模型参数。

3.4 softmax回归

对于多类别的预测任务,我们需要一个具有多输出的模型,也就需要和输出一样多的仿射函数,每一个输出都有它对应的仿射函数。例如,对于一个具有4个特征、3个输出的任务,将需要12个标量来表示权重。
o 1 = x 1 w 11 + x 2 w 12 + x 3 w 13 + x 4 w 14 + b 1 , o 2 = x 1 w 21 + x 2 w 22 + x 3 w 23 + x 4 w 24 + b 2 , o 3 = x 1 w 31 + x 2 w 32 + x 3 w 33 + x 4 w 34 + b 3 . \begin{array}{l} o_{1}=x_{1} w_{11}+x_{2} w_{12}+x_{3} w_{13}+x_{4} w_{14}+b_{1}, \\ o_{2}=x_{1} w_{21}+x_{2} w_{22}+x_{3} w_{23}+x_{4} w_{24}+b_{2}, \\ o_{3}=x_{1} w_{31}+x_{2} w_{32}+x_{3} w_{33}+x_{4} w_{34}+b_{3} . \end{array} o1=x1w11+x2w12+x3w13+x4w14+b1,o2=x1w21+x2w22+x3w23+x4w24+b2,o3=x1w31+x2w32+x3w33+x4w34+b3.
image-20230905121609073

为了确保最终输出的概率值总和为1,且拉开各个输出概率之间的距离,我们采用softmax函数:
y ^ = softmax ⁡ ( o )  其中  y ^ j = exp ⁡ ( o j ) ∑ k exp ⁡ ( o k ) \hat{\mathbf{y}}=\operatorname{softmax}(\mathbf{o}) \quad \text { 其中 } \quad \hat{y}_{j}=\frac{\exp \left(o_{j}\right)}{\sum_{k} \exp \left(o_{k}\right)} y^=softmax(o) 其中 y^j=kexp(ok)exp(oj)

3.5 图像分类数据集

  1. PIL :Python Imaging Library,python平台的一个图像处理库,由于PIL仅支持到python 2.7,因此志愿者在PIL的基础上开发了兼容版本,即 pillow。PIL 提供了一系列图像处理相关的功能,例如打开图像、裁剪图像、添加滤镜等。
  2. torchvision.transforms.ToTensor() :通过ToTensor实例将图像数据从PIL类型变换成32位浮点数格式,并除以255使得所有像素的数值均在0~1之间。(link
  3. torchvision.datasets :提供各种内置数据集,例如 CIFAR10、MNIST 等。(link
  4. axes = axes.flatten() :在用plt.subplots画多个子图中, axes = axes.flatten()axes n m nm nm 的Axes组展平成 1 × n m 1 \times nm 1×nm 的Axes组。前者需要使用 axes[i][j] 调用,而后者则可以直接使用 axes[i] 调用。(link

3.6 softmax回归的从零开始实现

  1. net.train()net.eval() :如果一个模型有Dropout与BatchNormalization,那么它在训练时要进行Dropout或者更新BatchNormalization参数,而在测试时不再需要Dropout或BN。此时,要用 net.train()net.eval() 进行区分。在没有涉及到BN与Dropout的模型,这两个函数没什么用。

3.7. softmax回归的简洁实现

  1. net.apply(fn) :对每一个子模块递归应用函数 fn ,典型的做法是初始化模型参数。 (link
@torch.no_grad()
def init_weights(m):
    print(m)
    if type(m) == nn.Linear:
        m.weight.fill_(1.0)
        print(m.weight)
net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2))
net.apply(init_weights)
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值