k-means及变种

转自:http://blog.csdn.net/tuqinag/article/details/45893459

聚类算法

聚类算法是属于无监督学习算法中非常常用的一种。算法使用的训练数据中的标签信息是未知的,目标是通过对无标记的训练样本的学习来揭示内在的性质和规律。聚类过程能够自动地形成簇结构,但是簇对应的概念语意需要由使用者来决定。聚类既能作为一个单独的过程,用于寻找数据的内在分布结构,也可以作为分类等其他学习任务的前驱过程。

性能度量

对于任何一个算法,我们都需要有一个性能指标来衡量算法结果的优劣。之前已经有一篇博客介绍了性能度量这一问题,那更多的是对于监督学习算法而言。对于聚类问题来说,有其相对独立的性能度量指标。

聚类是将数据集D划分为若干个互不相交的子集。直观上看,我们希望『物以类聚』,即同一簇的样本尽可能彼此相似,不同簇的样本尽可能不同。换言之,聚类结果的『簇内相似度』高且『簇间相似度』低。

聚类性能度量大致有两类。一类是将聚类结果与某个『参考模型』进行比较,称为『外部指标』;另一类是直接考察聚类结果而不利用任何参考模型,称为『内部指标』。

外部指标

对数据集D,假定通过聚类给出的簇划分为C={C1,C2,...,Ck},参考模型给出的簇划分为C∗={C∗1,C∗2,...,C∗s}。令λ与λ∗分别表示C与C∗对应簇的簇心向量。将样本两两配对考虑,定义:

 

a=|SS|,SS={(xi,xj)|λi=λj,λ∗i=λ∗j,i<j}

 

 

b=|SD|,SD={(xi,xj)|λi=λj,λ∗i≠λ∗j,i<j}

 

 

c=|DS|,DS={(xi,xj)|λi≠λj,λ∗i=λ∗j,i<j}

 

 

d=|DD|,DD={(xi,xj)|λi≠λj,λ∗i≠λ∗j,i<j}

 

其中集合SS包含了在C中隶属与相同簇且在C∗中也隶属于相同簇的样本对,集合SD包含了在C中隶属于相同簇但在C∗中隶属于不同簇的样本对。其他集合的含义可以类推得到。

基于以上集合,有下面这些常用的聚类性能度量外部指标:

Jaccard系数:

 

JC=aa+b+c

 

FM指数(Fowlkes and Mallows Index):

 

FMI=(aa+b⋅aa+c)−−−−−−−−−−−−√2

 

Rand指数:

 

RI=2(a+d)m(m−1)

 

上述性能度量的结果均在[0,1]区间内,只越大越好。

内部指标

考虑聚类结果的簇划分C={C1,C2,...,Ck},定义以下符号:

 

avg(C)=2|C|(|C|−1)∑1≤i<j≤|C|dist(xi,xj)

 

 

diam(C)=max1≤i<j≤|C|dist(xi,xj)

 

 

dmin(Ci,Cj)=minxi∈Ci,xj∈Cjdist(xi,xj)

 

 

dcen(Ci,Cj)=dist(μi,μj)

 

其中,dist(⋅,⋅)用于计算两个样本之间的距离;μ代表簇C的中心点μ=1|C|∑1≤i≤|C|xi。显然avg(C)对应于簇C内样本间的平均距离,diam(C)对应于簇C内样本间的最远距离,dmin(Ci,Cj)对应于簇Ci与簇Cj最近样本间的距离,dcen(Ci,Cj)对应于簇Ci与簇Cj中心点间的距离。

基于以上这些距离,可以导出以下常用的聚类性能度量的内部指标:

DB指数(Davies-Bouldin Index):

 

DBI=1k∑i=1kmaxj≠i(avg(Ci)+avg(Cj)dcen(μi,μj))

 

Dunn指数:

 

DI=min1≤i≤k{minj≠i(dmin(Ci,Cj)max1≤l≤kdiam(Cl))}

 

其中,DBI的值越小越好,而DI则相反,值越大越好。

距离度量

在聚类算法中,很多时候都需要用到距离的计算。对于这个问题,其实已经讨论的非常普遍了,这里也不想再展开,只说一些比较特定的问题吧。

我们通常将属性划分为『连续属性』和『离散属性』。然而在距离计算时,属性上是否定义了『序』关系更为重要。例如定义域为{1,2,3}的离散属性与连续属性的性质更为接近一些,能直接在属性上计算距离,这样的属性称为『有序属性』。而定义域为{飞机,火车,轮船}这样的离散属性则不能直接在属性上计算距离,称为『无序属性』。

对于无序属性的距离计算可以使用VDM(Value Difference Metric)。令mu,a表示在属性u上取值为a的样本数,mu,a,i表示在第i个样本簇中属性u上取值为a的样本树,k为样本簇数,则属性u上两个离散值a与b之间的VDM距离为:

 

VDMp(a,b)=∑i=1k|mu,a,imu,a−mu,b,imu,b|p

 

关于VDM度量我是有一个疑问的,在一开始没有对数据进行聚类时,如何计算两个属性间的VDM值?希望能给一些解答。

将明可夫斯基距离与VDM相结合即可处理混合属性。假设有nc个有序属性,n−nc个无序属性,令有序属性排列在无序属性之前,则:

 

MinkovDMp(xi,xj)=(∑u=1nc|xju−xiu|p+∑u=nc+1nVDMp(xiu,xju))1p

 

基于原型的聚类

这里的『原型』是指样本空间中具有代表性的点。此类算法假设聚类结构能够通过一组原型刻画。通常情况下,算法先对原型进行初始化,然后对原型进行迭代更新求解。采用不同的原型表示,不同的求解方式,将产生不同的算法。

K-means算法

算法的主要流程如下:

选择k个点作为初始质心;
Repeat:
    将每个点指派到最近的质心,形成k个簇;
    重新计算每个簇中所有点的均值并将均值作为质心;
Until
    簇不再发生变化或达到最大的迭代次数。
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

在此,需要对该算法进行如下说明:

1)将点指派到最近的质心:对欧式空间中的点使用欧几里得距离L2(最小化),对文档用余弦相似性(最大化)。这相当于是一种贪心的选择。

2)误差平方和作为度量质量聚类的目标函数。

 

SSE=∑i=1K∑x∈Cidist(Ci−x)2

 

Ci是第i个簇的质心,Ci=1|Ci|∑x∈Cix

3)找到的是局部最优,因为是对选定的质心和簇。

选取初始质心的改进

在k-means方法中,k值的选择以及初始聚类中心的选择对于算法的效果影响很大。常见的方法是随机的选取初始质心,但是这样簇的质量常常很差。处理选取初始质心问题的一种常用技术是:多次运行,每次使用一组不同的随机初始质心,然后选取具有最小SSE(误差的平方和)的簇集。这种策略简单,但是效果可能不好,这取决于数据集和寻找的簇的个数。

第二种有效的方法取一个样本,并使用层次聚类(这种方法我们之后会介绍到)技术对训练数据进行聚类。从层次聚类中提取K个簇,并用这些簇的质心作为初始质心。该方法通常很有效,但仅对下列情况有效:

(1)样本相对较小,例如数百到数千(层次聚类开销较大);

(2)K相对于样本大小较小

第三种方法,随机地选择第一个点,或整个训练集的质心作为第一个点。然后,对于每个后继初始质心,选择离已经选取过的初始质心最远的点。使用这种方法,确保了选择的初始质心不仅是随机的,而且是散开的。但是,这种方法可能选中离群点。此外,求离当前初始质心集最远的点开销也非常大。为了克服这个问题,通常该方法用于点样本。由于离群点很少(多了就不是离群点了),它们多半不会在随机样本中出现。计算量也大幅减少。

空聚类的处理

如果有的点在指派步骤都未分配到某个簇,就会得到空簇。如果这种情况发生,则需要某种策略来选择一个替补质心,否则的话,平方误差将会偏大。一种方法是选择一个距离当前任何质心最远的点。这将消除当前对总平方误差影响最大的点。另一种方法是从具有最大SSE的簇中选择一个替补的质心。这将分裂簇并降低聚类的总SSE。如果有多个空簇,则该过程重复多次。另外,编程实现时,要注意空簇可能导致的程序bug。

补充

其实我们也可以用EM算法来解释K-means算法的学习过程(如果还不知道EM算法是什么,可以翻一下我关于EM算法的博客)。我们的目的就是将样本分为k个类,其实说白了就是求一个样本的隐含类别,然后用隐含类别将x归类。由于我们事先不知道类别y,那么首先我们可以对每个样例假定一个y。

E-step:将样本分配到距离最近的聚类中心所属的簇,这相当于对隐含变量y进行求解。

M-step:更新每个簇的聚类中心,使得p(x,c)最大。

混合高斯聚类

混合高斯聚类采用概率模型来表达聚类原型。定义混合高斯分布为:

 

pM(x)=∑i=1kαi⋅p(x|μi,Σi)

 

该分布共由k个混合成分组成,每一个混合成分对应一个高斯分布。其中μi与Σi是第i个高斯混合成分的参数,而αi>0为对应的混合系数,∑ki=1αi=1。

假设样本的生成过程由高斯混合分布给出:首先,根据α1,α2,...,αk定义的先验分布选择高斯混合成分,其中αi为选择第i个混合成分的概率;然后,根据被选择的混合成分的概率密度函数进行采样,从而生成相应的样本。

若训练集D由上述过程生成,令随机变量zj∈{1,2,...,k}表示生成样本xj的聚类标签。显然,zj的先验概率P(zj=i)对应于αi。根据贝叶斯定理,zj的后验分布对应于:

 

PM(zj=i|xj)=P(zj=i)⋅pM(xj|zj=i)pM(xj)=αi⋅p(xj|μi,Σi)∑kl=1αl⋅p(xj|μl,Σl)

 

pM(zj=i|xj)给出了样本xj由第i个高斯混合成分生成的后验概率,将其简记为γji。当高斯混合分布已知时,高斯混合聚类把样本D划分为k个簇C={C1,C2,...,Ck},每个样本xj的簇标记为λj如下确定:

 

λj=argmaxi∈{1,2,...,k}γji

 

对于这个式子如何求解,我们会用到一个叫做EM的算法,之后会专门有一篇博客来介绍该算法以及高斯混合聚类的求解过程。

层次聚类

试图在不同层次对数据集进行划分,从而形成树形的聚类结构。这里的划分方式有两种:

(1)自底向上的:从点作为个体簇开始,每一合并两个最接近的簇。这需要定义簇的邻接性的概念。(主要讲这个)

(2)自顶向下的:从包含所有点的一个簇开始,每一步分裂一个簇,直到仅剩下单点簇。这种情况下,我们需要确定每一步分裂哪个簇,以及如何分裂。

算法的具体流程

输入:样本集D={x1,x2,...,xm},聚类簇距离度量函数d,聚类簇数k

过程:

for j = 1, 2, ..., m do
    $C_j = \{x_j\}$
end for
for i = 1, 2, ..., m do
    for j = 1, 2, ..., m do
        M(i, j) = d($C_i, C_j$)
        M(j, i) = M(i, j)
    end for
end for
设置当前聚类簇数:q = m
while q > k:
    找出距离最近的两个聚类簇$C_{i^*}$和$C_{j^*}$
    合并$C_{i^*}$和$C_{j^*}$:$C_{i^*} = C_{i^*} \bigcup C_{j^*}$
    for j = j^* + 1, j^* + 2,...,q do
        将聚类簇$C_j$重编号为$C_{j - 1}$
    end for
    删除距离矩阵M的第$j^*$行与第$j^*$列
    for j = 1, 2,..., q - 1 do
        M($i^*, j$) = d($C_{i^*}, C_j$)
        M($j, i^*$) = M($i^*, j$)
    end for
    q = q - 1
end while
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23

输出:簇划分C={C1,C2,...,Ck}

簇之间的距离

从上面的算法中可以看出,需要计算簇之间的距离。这里通常的方法有三种:

最小距离:dmin(Ci,Cj)=minx∈Ci,z∈Cjdist(x,z)

最大距离:dmax(Ci,Cj)=maxx∈Ci,z∈Cjdist(x,z)

平均距离:davg(Ci,Cj)=1|Ci||Cj|∑x∈Ci∑z∈Cjdist(x,z)

在具体的算法中,选择这三种不同的方法又有不同的称呼。

单链接:使用最小距离,擅长于处理非椭圆形状的簇,但对噪声和离群点很敏感。

全链接:使用最大距离,对噪声和离群点不太敏感,但是它可能使大的簇破裂,并且偏好于球形。

组平均:使用平均距离。

可以使用一个简单的例子来说明下这几种方法的异同点:

X坐标Y坐标
P10.40050.5306
P20.21480.3854
P30.34570.3156
P40.26520.1875
P50.07890.4139
P60.45480.3022

6个点的欧几里得距离矩阵:

P1P2P3P4P5P6
P10.00000.23570.22180.36880.34210.2347
P20.23570.00000.14830.20420.13880.2540
P30.22180.14830.00000.15130.24830.1100
P40.36880.20420.15130.00000.29320.2216
P50.34120.13880.28430.29320.00000.3921
P60.23470.25400.11000.22160.39120.0000

对于单链聚类:

单链聚类

 

Dist((3,6),(2,5))=min(dist(3,2),dist(6,2),dist(3,5),dist(6,5))=min(0.13,0.25,0.28,0.39)=0.15

 

对于全链聚类,与单链的区别就是每次依然是选取两个最近的点形成簇,计算邻近度的时候是比较各个点与簇之间的最长链的最小值:
全链聚类

 

dist((3,6),(4))=max(dist(3,4),dist(6,4))=max(0.15,0.22)=0.22

 

 

dist((3,6),(2,5))=max(dist(3,2),dist(6,2),dist(3,5),dist(6,5))=max(0.15,0.25,0.28,0.39)=0.39

 

 

dist((3,6),(1))=max(dist(3,1),dist(6,1))=max(0.22,0.23)=0.23

 

所以{3,6}与{4}合并。

对于组平均,选取两个最邻近的点形成簇,计算邻近度的时候是比较各个点(簇)与簇之间的均值的最小值。

proximity(Ci,Cj)=∑x⊆Ciy⊆Cjproximity(x,y)mi×mj

 

其中mi和mj是簇Ci和Cj的大小。

组平均

 

dist((3,6,4),(1))=(0.22+0.37+0.23)/(3×1)=0.28

 

 

dist((2,5),(1))=(0.2357+0.3421)/(2×1)=0.2889

 

 

dist((3,6,4),(2,5))=(0.15+0.28+0.25+0.39+0.20+0.29)/(3×2)=0.26

 

所以簇{3,6,4}和簇{2,5}合并。

层次聚类的问题

(1)层次聚类不能视为全局优化一个目标函数。这样的方法没有局部最小问题或很难选择初始点的问题。

(2)处理不同大小的聚类能力。即如何处理待合并的簇对的相对大小。有两种方法:加权,平等的对待所有簇;非加权,考虑每个簇的点数。注意:加权和非加权是对数据而言,而不是对簇。即,平等的对待不同大小的簇意味着赋予不同簇中的点不同的权值,而考虑簇的大小则赋予不同簇中的点相同的权值。一般地,非加权的方法更可取,除非有理由相信个体点具有不同的权值:例如,或许对象类非均匀地抽样。

(3)合并决策是最终的。对于合并两个簇,凝聚层次算法倾向于作出好的局部决策,因为它们可以使用所有点的逐对相似度信息。然而,一旦作出合并两个簇的决策,以后就不能撤销。

基于密度的聚类算法:DBSCAN

此算法假设聚类结构能够通过样本分布的紧密程度确定。通常情况下,密度聚类算法从样本密度的角度来考察样本间的可连接性,并基于可连接性不断扩展聚类簇以获得最终聚类结果。

这里需要介绍几个重要的概念:

ϵ-邻域:对xj∈D,其ϵ-邻域包含数据集D中与xj的距离不大于ϵ的样本。

核心对象:若xj的ϵ-邻域至少包含MinPts个样本,则xj是一个核心对象。

密度直达:若xj位于xi的ϵ-邻域中,且xi是核心对象,则称xj由xi密度直达。xj可能是也可能不是核心对象。

密度可达:对xi与xj,若存在样本序列p1,p2,...,pn,其中p1=xi,pn=xj,且pi+1由pi密度直达,则称xj由xi密度可达。这里除了xj其余肯定是核心对象,而xj可能是可能也不是。

密度相连:对xi与xj,若存在xk使得xi与xj均由xk密度可达,则称xi与xj密度相连。xk肯定是核心对象,xi与xj则可能是可能也不是。

基于上述这些概念,DBSCAN算法将『簇』定义为:由密度可达关系导出的最大的密度相连的样本集合。

算法描述

输入:样本集D={x1,x2,...,xm},领域参数(ϵ,MinPts)

过程:

初始化核心对象集合:$\Omega = \varnothing$
for j = 1,2,...,m do
    确定样本$x_j$的$\epsilon$-邻域$N_{\epsilon}(x_j)$
    if $|N_{\epsilon}(x_j)| \geq MinPts$ then
        将样本$x_j$加入核心对象集合:$\Omega = \Omega \bigcup \{x_j\}$
    end if
end for
初始化聚类簇数:k = 0
初始化未访问样本集合:T = D
while $\Omega \neq \varnothing$ do
    记录当前未访问样本集合:$T_{old} = T$
    随机选取一个核心对象$o \in \Omega$,初始化队列Q = <o>
    T = T \ {o}
    while $Q \neq \varnothing$ do
        取出队列Q中首个样本q
        if $|N_{\epsilon}(q)| \geq MinPts$ then
            令$\Delta = N_{\epsilon}(q) \bigcap T$ //取出其中还没有被访问的点
            将$\Delta$中的样本加入队列Q
            T = T \ $\Delta$
        end if
    end while
    k = k + 1,生成聚类簇$C_k = T_{old} \ T$
    $\Omega = \Omega \ C_k$
end while
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24

输出:簇划分C={C1,C2,...,Ck}

算法优缺点

优点:

  1. 与k-means算法相比,DBSCAN不需要指定簇的具体数目。   
  2. DBSCAN能够形成任意形状的簇。  
  3. DBSCAN能够对噪声进行过滤,没有属于任何簇的样本点被认为是噪声。

缺点:

  1. DBSCAN不能很好地处理高维数据,在计算密度时的计算量很大。
  2. DBSCAN不很好地反应数据集的密度变化。

写在最后

该文档的总结一开始是由刘金凤师姐完成的,之后我又在其中增加了一部分内容,部分内容出自《机器学习》(周志华)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值