Pytorch入门(四)——计算图与自动求导

本文介绍了PyTorch中的计算图概念,包括结点和边的定义,并展示了如何利用计算图进行梯度求导。重点讲解了torch.autograd模块,包括torch.autograd.backward和torch.autograd.grad的用法,以及在动态图模式下如何进行自动求导。
摘要由CSDN通过智能技术生成

1 计算图

1.1 计算图介绍

计算图是用来描述运算的有向无环图,其中有两个主要元素:结点(Node)和边(Edge)

结点表示数据,如向量,矩阵,张量

边表示运算,如加减乘除卷积等

实例:

用计算图表示y=(x+w) * (w+1)

a = x + w

b = w + 1

y = a * b
在这里插入图片描述

1.2 计算图与梯度求导

通过计算图,我们可以对求导的过程一目了然,例如: y = ( x + w ) ∗ ( w + 1 ) y = (x+w)*(w+1) y=(x+w)(w+1),我们需要对w求导,

且$a = x+w , , ,b = w+1$

y = a ∗ b y=a*b y=ab

则有
θ y θ w = θ y θ a θ a θ w + θ y θ b θ b θ w \frac{\theta y}{\theta w}=\frac{\theta y}{\theta a}\frac{\theta a}{\theta w}+\frac{\theta y}{\theta b}\frac{\theta b}{\theta w} θwθy=θaθyθwθa

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值