YOLO学习笔记 | YOLOv11的改进方向与应用领域

YOLOv11作为目标检测领域的前沿模型,其改进方向和应用领域在多个研究中得到了广泛探索。以下从改进策略和应用场景两个维度进行综合总结:


一、YOLOv11的改进方向

1. 骨干网络(Backbone)优化
  • Swin Transformer替换:通过引入层次化特征表示和移位窗口自注意力机制,解决了视觉任务中的尺度差异和分辨率问题,显著提升多尺度特征提取能力。
  • 轻量化网络设计:采用MobileViT和GhostNet等结构,结合卷积与Transformer的优势,在降低参数量和计算量的同时保持性能。例如,替换为MobileViT后,模型参数量从20M降至12M,推理速度提升至2.1ms。
2. 特征增强与多尺度融合
  • 自适应特征增强模块(AFE):通过卷积嵌入、空间上下文模块(SCM)和特征细化模块(FRM),增强复杂场景(如杂乱背景、半透明物体)下的特征表达能力࿰
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

单北斗SLAMer

代码有情,打赏有爱!谢谢!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值