YOLOv11作为目标检测领域的前沿模型,其改进方向和应用领域在多个研究中得到了广泛探索。以下从改进策略和应用场景两个维度进行综合总结:
一、YOLOv11的改进方向
1. 骨干网络(Backbone)优化
- Swin Transformer替换:通过引入层次化特征表示和移位窗口自注意力机制,解决了视觉任务中的尺度差异和分辨率问题,显著提升多尺度特征提取能力。
- 轻量化网络设计:采用MobileViT和GhostNet等结构,结合卷积与Transformer的优势,在降低参数量和计算量的同时保持性能。例如,替换为MobileViT后,模型参数量从20M降至12M,推理速度提升至2.1ms。
2. 特征增强与多尺度融合
- 自适应特征增强模块(AFE):通过卷积嵌入、空间上下文模块(SCM)和特征细化模块(FRM),增强复杂场景(如杂乱背景、半透明物体)下的特征表达能力