kalman滤波理解二:预测和更新过程

这篇主要讲kalman滤波的预测和更新过程,首相强调以下上篇(kalman滤波理解一:理论框架)所强调的连个理论原则:

  • 预测过程符合全概率法则,是卷积过程,即采用概率分布相加;
  • 感知过程符合贝叶斯法则,是乘积过程,即采用概率分布相乘;

(一)预测过程

假设有一辆小车在路上行驶,其状态有位置p,速度v,我们用一个列向量来表示此时的状态:

                                                                         

如果我问你,经过时间后,其位置和速度分别是多少?计算也很简单,我们假设该系统是无控制系统,即没有控制输入,保持匀速直线行驶:

                                                                       

表示成矩阵形式就是:

                                                                

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值